Catalytic Asymmetric Synthesis of β, γ-Alkynyl α-Amino Esters via Chemo- and Enantio-selective Transfer Hydrogenation

Lu Zhang Aiqin Liu Huazheng Liu Renzhong Wan Shutao Sun Lei Liu

Citation:  Zhang Lu, Liu Aiqin, Liu Huazheng, Wan Renzhong, Sun Shutao, Liu Lei. Catalytic Asymmetric Synthesis of β, γ-Alkynyl α-Amino Esters via Chemo- and Enantio-selective Transfer Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2904-2911. doi: 10.6023/cjoc202005037 shu

基于化学和对映选择性转移氢化的β, γ-炔基α-氨基酸酯的催化不对称合成研究

    通讯作者: 万仁忠, wrzh63@163.com
    孙书涛, sunshutao@sdu.edu.cn
    刘磊, leiliu@sdu.edu.cn
  • 基金项目:

    国家自然科学基金 21722204

    国家自然科学基金(Nos.21722204,21971148)资助项目

    国家自然科学基金 21971148

摘要: 报道了一个通过βγ-炔基α-亚胺酸酯的化学和对映选择性转移氢化反应来合成光学纯βγ-炔基α-氨基酸酯的方法.该不对称还原反应所展示出的优秀的化学选择性是由手性磷酸作为催化剂以及苯并噻唑啉作为氢负供体实现的.反应展示出了良好的官能团兼容性,高对映选择性地合成了一系列光学活性的非天然氨基酸酯化合物.

English

  • Chemoselectivity, which refers to the ability of a given reagent to react with one particular group in a molecule in preference to another group, is of vital importance for a given reaction.[1] Reactions that proceed in highly chemoselective manner require minimal reliance on protecting groups[2] and improve both atom[3] and step economy.[4] Optically active non-natural amino acids are basic subunits for a broad range of important molecules in medicine and biology.[5-6] In particular, optically pure β, γ-alkynyl α-amino acids and their derivatives, which allow for further synthetic elaboration, represent a special class of these compounds.[7] Although continuous attention has been paid to explore the efficient methodologies for their synthesis, asymmetric synthesis of β, γ-alkynyl α-amino acids and their derivatives has remained challenging.[8-9] The enantioselective addition of terminal alkynes to α-imino esters represents a straightforward strategy.[8] However, the methods suffered from narrow scope of the alkyne component. Asymmetric reduction of imines has emerged as a powerful tool for amines synthesis, [10] and therefore selective reduction of β, γ-alkynyl α-imino esters represents the other ideal strategy.[9] However, chemo- and enantioselective reduction of the imine moiety with the alkyne intact proved to be difficult (Scheme 1, A). You group[9a] reported a chiral phosphoric acid (CPA) catalyzed asymmetric transfer hydrogenation process using Hantzsch ester as reducing agent, giving β, γ-alkenyl α-amino esters through concurrent reduction of both C≡C bond and C=N bond. Zhou group[9b] demonstrated that the chemoselective reduction of the C=N bond over C≡C bond could be achieved by using 5, 6-dihydrophenanthri- dine as the hydrogen source. However, the expected β, γ-alkynyl α-amino ester was isolated in only 26% yield with 36% ee. Recently, we reported a non-enzymatic redox deracemization of β, γ-alkynyl α-amino esters consisting of a copper mediated aerobic oxidation and CPA catalyzed asymmetric transfer hydrogenation (Scheme 1, B).[11] β, γ-Alkynyl α-imino esters were identified as oxidized intermediates for subsequent asymmetric reduction using benzothiazoline as hydride donor with exclusive chemoselectivity at the imine moiety over alkyne.[12] Given the ready availability of β, γ-alkynyl α-imino esters, we herein report the direct asymmetric transfer hydrogenation method using benzothiazoline as hydride donor to prepare optical pure β, γ-alkynyl α-amino esters with excellent chemo- and enantioselectivity (Scheme 1, C).

    Scheme 1

    Scheme 1.  Overview of chemo- and enantioselective reduction of β, γ-alkynyl α-imino esters

    The synthetic route of compound 1 is shown in Scheme 2. Initially, asymmetric transfer hydrogenation of aliphatic alkynyl substituted α-imino ester 1a was selected as a model reaction using CPA 3 as the catalyst and 1.2 equiv. of benzothiazoline 4 as reducing agent in the presence of 3Å molecular sieves (Table 1). CPA 3a catalyzed reaction with 4a proceeded smoothly affording the expected (S)-2a in 71% yield with 70% ee (Entry 1, Table 1). Notably, no unexpected alkyne reduction product was observed. An extensive investigation of CPA catalysts suggested 3e was the best choice, [13] and (S)-2a was obtained in 72% yield with 76% ee (Entries 2~8, Table 1). Further optimization of benzothiazolines identified 4d to be optimal (Entries 9~13, Table 1). The solvents were found to be crucial to the yields and enantioselectivity, and when asymmetric reduction was performed in a 1:1 mixture of decane and mesitylene, the asymmetric transfer hydrogen provided (S)-2a in 89% yield with 90% ee (Entries 14~24, Table 1). The reaction was found to be sensitive to the moisture, and 3Å molecular sieves was identified as the best choice (Entries 25~27, Table 1).

    Scheme 2

    Scheme 2.  Synthetic route of compound 1

    Table 1

    Table 1.  Reaction condition optimizationa
    下载: 导出CSV
    Entry Solvent R (3) Ar (4) Yieldb/% eec/%
    1 Hexane 4-CF3C6H4 (3a) Ph (4a) 71 70
    2 Hexane 3, 5-(CF3)2C6H3 (3b) Ph (4a) 74 53
    3 Hexane 1-Naphthyl (3c) Ph (4a) 65 33
    4 Hexane 2-Naphthyl (3d) Ph (4a) 68 50
    5 Hexane 2, 4, 6-iPr3C6H2 (3e) Ph (4a) 72 76
    6 Hexane 2, 4, 6-(cyclo-C6H11)3C6H2 (3f) Ph (4a) 62 71
    7 Hexane SiPh3 (3g) Ph (4a) < 5 n.d.
    8 Hexane 9-Anthryl (3h) Ph (4a) 53 50
    9 Hexane 2, 4, 6-iPr3C6H2 (3e) 4-ClC6H4 (4b) 60 70
    10 Hexane 2, 4, 6-iPr3C6H2 (3e) 4-MeOC6H4 (4c) 64 47
    11 Hexane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 67 79
    12 Hexane 2, 4, 6-iPr3C6H2 (3e) 2-Naphthyl (4e) 47 65
    13 Hexane 2, 4, 6-iPr3C6H2 (3e) 9-Anthryl (4f) < 5 n.d.
    14 Cyclohexane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 73 69
    15 CH2Cl2 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 89 7
    16 THF 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) < 5 n.d.
    17 Ethyl acetate 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 76 55
    18 Toluene 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 85 71
    19 Mesitylene 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 92 85
    20 Pentane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 52 68
    21 Decane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 78 86
    22 Decane/mesitylene (V:V=8:2) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 80 86
    23 Decane/mesitylene (V:V=7:3) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 84 87
    24 Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 89 90
    25d Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 75 68
    26e Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 80 79
    27f Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 82 81
    a Reaction conditions: 1a (0.1 mmol), 3 (5 mol%), 4 (0.12 mmol), and 3Å molecular sieves (40 mg) in solvent (2.0 mL) at room temperature for 4 h. b Yield of the isolated product. c Determined by chiral HPLC analysis. d Reaction without molecular sieves. e 4Å molecular sieves was used. f 5Å molecular sieves. n.d.=not determined.

    With the optimized conditions in hand, the scope of asymmetric transfer hydrogenation of β, γ-alkynyl α-imino esters was investigated (Table 2). The reaction was found to be fairly general for substrates bearing a wide range of aliphatic alkynes with varied chain lengths, affording corresponding optically pure 2a~2c in good yields with excellent ee (90%~98%). The method had good functional group compatibility and good tolerance to aryl (2d), benzyl ether (2e), acetal (2f), alkenyl (2g) and silyl ether (2h). Substrates containing electronically varied heteroaryl (2i) and aryl acetylenes (2j~2l) were also suitable candidates. In addition, the method was found to be insensitive to the variant of the ester moiety, as demonstrated by effective reduction of 2m and 2n.

    Table 2

    Table 2.  Scope of β, γ-alkynyl α-imino esters
    下载: 导出CSV

    In summary, an effective chemo- and enantioselective transfer hydrogenation of β, γ-alkynyl α-imino esters to afford optically pure β, γ-alkynyl α-amino esters has been described. The excellent chemoselectivity was achieved by chiral phosphoric acid catalyzed asymmetric reduction with benzothiazoline as hydride donor. The reaction exhibited good functional group tolerance, providing a range of optically active non-natural α-amino esters with excellent enantioselectivity.

    All reactions were carried out with dry solvents under anhydrous conditions. Standard syringe techniques were applied for transfer of dry solvents and some air-sensitive reagents and were introduced into reaction vessels through a rubber septum. 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE Ⅲ 500 NMR Spectrometer at 500 MHz and 125 MHz, respectively. CDCl3 was used as solvent and reference (δH=7.26, δC=77.23). Analytical thin layer chromatography (TLC) was performed on precoated silica gel GF254 plates. Column chromatography was carried out on silica gel (200~300 mesh). HRMS were carried out on an Orbitrap analyzer. UV spectra were obtained with an Agilent 8453E UV- Visible spectroscopy system. Optical rotations were measured using a 2.5 mL cell with a 10 cm path length on a Hanon P850 Automatic Polarimeter. Enantiomeric excesses were determined by HPLC using a Daicel Chiralpak AD-H or IB column with hexane/i-PrOH as the eluent.

    p-Anisidine (5 mmol) was dissolved in toluene (10 mL), and anhydrous sodium sulfate (10 mmol) was added with stirring. Ethyl glyoxalate (6 mmol) was added slowly and the mixture was allowed to stir for 1 h. After completion of the reaction, sodium sulfate was removed by filtration and toluene was removed under vacuum to yield the crude S1 which was used for the next step without purification.[14-15]

    To a stirred mixture of the corresponding alkyne (0.4 mmol, 2.0 equiv.) and AgOTf (0.02 mmol, 10 mol%) in CH2Cl2 (2 mL) was the added S1 (0.2 mmol, 1.0 equiv.), the mixture was stirred overnight at room temperature. After all the S1 disappeared monitored by TLC, Cu(OAc)2 (0.02 mmol, 10 mol%) was added. The mixture was stirred at room temperature under dioxygen atmosphere (dioxygen balloon, 101 kPa) for 3 h and then was purified by flash chromatography to give the desired product 1 by using solution of EtOAc in petroleum ether as eluent.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)dec-3-ynoate (1a): Using 10% solution of EtOAc in petroleum ether as eluent (54.8 mg, 87% yield). 1H NMR (500 MHz, CDCl3) δ: 7.44~7.40 (m, 2H), 6.91~6.87 (m, 2H), 4.41 (q, J=7.1 Hz, 2H), 3.82 (s, 3H), 2.39 (t, J=7.0 Hz, 2H), 1.55~1.50 (m, 2H), 1.40 (t, J=7.1 Hz, 3H), 1.32~1.24 (m, 6H), 0.88~0.86 (m, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.27, 159.19, 141.79, 140.14, 124.45, 113.81, 102.12, 75.35, 62.81, 55.58, 31.46, 28.67, 27.86, 22.69, 19.89, 14.37, 14.22; HRMS (ESI) calcd for C19H26NO3 [M+H]+ 316.1907, found 316.1925.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)dodec-3-ynoate (1b): Using 10% solution of EtOAc in petroleum ether as eluent (61.1 mg, 89% yield). 1H NMR (500 MHz, CDCl3) δ: 7.44~7.40 (m, 2H), 6.91~6.87 (m, 2H), 4.40 (q, J=7.1 Hz, 2H), 3.82 (s, 3H), 2.39 (t, J=7.0 Hz, 2H), 1.55~1.50 (m, 2H), 1.40 (t, J=7.1 Hz, 3H), 1.30~1.23 (m, 10H), 0.88~0.85 (m, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.26, 159.18, 141.77, 140.08, 124.46, 113.79, 102.07, 75.34, 62.78, 55.55, 31.99, 29.33, 29.23, 28.99, 27.88, 22.82, 19.87, 14.36, 14.26; HRMS (ESI) calcd for C21H30NO3 [M+H]+ 344.2220, found 344.2244.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)oct-3-ynoate (1c): Using 10% solution of EtOAc in petroleum ether as eluent (49.4 mg, 86% yield). 1H NMR (500 MHz, CDCl3) δ: 7.44~7.38 (m, 2H), 6.91~6.87 (m, 2H), 4.40 (q, J=7.1 Hz, 2H), 3.81 (s, 3H), 2.39 (t, J=7.0 Hz, 2H), 1.51 (dt, J=14.9, 7.0 Hz, 2H), 1.41~1.33 (m, 5H), 0.88 (t, J=7.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.23, 159.15, 141.77, 140.08, 124.41, 113.78, 102.01, 75.32, 62.77, 55.56, 29.87, 22.01, 19.51, 14.33, 13.67; HRMS (ESI) calcd for C17H22NO3 [M+H]+ 288.1594, found 288.1588.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)-5-phenylpent-3- ynoate (1d): Using 10% solution of EtOAc in petroleum ether as eluent (57.1 mg, 89% yield). 1H NMR (500 MHz, CDCl3) δ: 7.38~7.34 (m, 2H), 7.31~7.26 (m, 1H), 7.24~7.21 (m, 1H), 7.19~7.15 (m, 2H), 6.86~6.82 (m, 2H), 4.41 (q, J=7.1 Hz, 2H), 3.83 (s, 3H), 2.87 (t, J=7.3 Hz, 2H), 2.71 (t, J=7.3 Hz, 2H), 1.41 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.27, 159.30, 141.64, 140.02, 128.70, 128.59, 126.74, 124.58, 113.87, 100.67, 75.87, 62.85, 55.63, 34.10, 21.94, 14.41; HRMS (ESI) calcd for C20H20NO3 [M+H]+ 322.1438, found 322.1441.

    (Z)-Ethyl 6-(benzyloxy)-2-((4-methoxyphenyl)imino)hex- 3-ynoate (1e): Using 10% solution of EtOAc in petroleum ether as eluent (69.2 mg, 85% yield). 1H NMR (500 MHz, CDCl3) δ: 7.45~7.39 (m, 2H), 7.36~7.28 (m, 5H), 6.91~6.88 (m, 2H), 4.49 (s, 2H), 4.40 (q, J=7.1 Hz, 2H), 3.81 (s, 3H), 3.44 (t, J=6.5 Hz, 2H), 2.41 (t, J=7.0 Hz, 2H), 1.64~1.54 (m, 5H), 1.46~1.38 (m, 5H); 13C NMR (125 MHz, CDCl3) δ: 163.26, 159.20, 141.80, 140.10, 138.73, 128.57, 127.81, 127.74, 124.45, 113.84, 101.75, 75.45, 73.13, 70.29, 62.83, 55.60, 29.42, 27.77, 25.67, 19.85, 14.39; HRMS (ESI) calcd for C25H30NO4 [M+H]+ 408.2169, found 408.2185.

    (Z)-Ethyl 8-(1, 3-dioxolan-2-yl)-2-((4-methoxyphenyl)- imino)oct-3-ynoate (1f): Using 20% solution of EtOAc in petroleum ether as eluent (60.3 mg, 84% yield). 1H NMR (500 MHz, CDCl3) δ: 7.45~7.39 (m, 2H), 6.93~6.88 (m, 2H), 4.81 (t, J=4.7 Hz, 1H), 4.41 (q, J=7.1 Hz, 2H), 3.97~3.93 (m, 2H), 3.85~3.82 (m, 5H), 2.41 (t, J=6.9 Hz, 2H), 1.68~1.57 (m, 5H), 1.52~1.46 (m, 2H), 1.40 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.25, 159.24, 141.80, 140.04, 124.47, 113.87, 104.49, 101.53, 75.51, 65.05, 62.80, 55.60, 33.47, 27.84, 23.49, 19.85, 14.37; HRMS (ESI) calcd for C20H26NO5 [M+H]+ 360.1805, found 360.1811.

    (Z)-Ethyl 4-(cyclohex-1-en-1-yl)-2-((4-methoxyphenyl)- imino)but-3-ynoate (1g): Using 10% solution of EtOAc in petroleum ether as eluent (53.5 mg, 86% yield). 1H NMR (500 MHz, CDCl3) δ: 7.50~7.45 (m, 2H), 6.92~6.87 (m, 2H), 6.30 (d, J=1.1 Hz, 1H), 4.40 (q, J=7.1 Hz, 2H), 3.81 (s, 3H), 2.13 (t, J=5.1 Hz, 4H), 1.64~1.55 (m, 4H), 1.39 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.15, 159.32, 141.78, 141.12, 139.53, 124.88, 119.92, 113.73, 101.00, 81.58, 62.71, 55.58, 28.20, 26.20, 22.08, 21.30, 14.32; HRMS (ESI) calcd for C19H22NO3 [M+H]+ 312.1594, found 312.1596.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)-4-(trimethylsilyl)- but-3-ynoate (1h): Using 5% solution of EtOAc in petroleum ether as eluent (48.5 mg, 80% yield). 1H NMR (500 MHz, CDCl3) δ: 7.57~7.51 (m, 2H), 6.92~6.87 (m, 2H), 4.41 (q, J=7.1 Hz, 2H), 3.84 (s, 3H), 1.41 (t, J=7.1 Hz, 3H), 0.21 (s, 9H); 13C NMR (125 MHz, CDCl3) δ: 162.94, 159.83, 141.30, 138.60, 125.31, 113.76, 106.89, 97.51, 62.85, 55.67, 14.34, -0.58; HRMS (ESI) calcd for C16H22NO3Si [M+H]+ 304.1363, found 304.1378.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)-4-(thiophen-3- yl)but-3-ynoate (1i): Using 15% solution of EtOAc in petroleum ether as eluent (52.6 mg, 84% yield). 1H NMR (500 MHz, CDCl3) δ: 7.60 (dd, J=3.0, 1.1 Hz, 1H), 7.55~7.51 (m, 2H), 7.31 (dd, J=5.0, 3.0 Hz, 1H), 7.14 (dd, J=5.0, 1.1 Hz, 1H), 6.97~6.93 (m, 2H), 4.46 (q, J=7.1 Hz, 2H), 3.85 (s, 3H), 1.44 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.08, 159.62, 141.85, 139.33, 132.54, 130.06, 126.20, 124.93, 120.49, 113.95, 93.98, 83.58, 62.95, 55.69, 14.43; HRMS (ESI) calcd for C17H16NO3S [M+H]+ 314.0845, found 314.0844.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)-4-phenylbut-3- ynoate (1j): Using 15% solution of EtOAc in petroleum ether as eluent (55.9 mg, 91% yield). 1H NMR (500 MHz, CDCl3) δ: 7.59~7.53 (m, 2H), 7.50~7.45 (m, 2H), 7.43~7.39 (m, 1H), 7.38~7.33 (m, 2H), 6.98~6.94 (m, 2H), 4.47 (q, J=7.1 Hz, 2H), 3.86 (s, 3H), 1.45 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.07, 159.66, 141.84, 139.31, 132.72, 130.35, 128.76, 125.02, 121.28, 113.96, 98.51, 83.57, 62.93, 55.70, 14.43; HRMS (ESI) calcd for C19H18NO3 [M+H]+ 308.1281, found 308.1288.

    (Z)-Ethyl 2-((4-methoxyphenyl)imino)-4-(p-tolyl)but-3- ynoate (1k): Using 15% solution of EtOAc in petroleum ether as eluent (55.2 mg, 86% yield). 1H NMR (500 MHz, CDCl3) δ: 7.57~7.54 (m, 2H), 7.38~7.34 (m, 2H), 7.17~7.13 (m, 2H), 6.98~6.93 (m, 2H), 4.46 (q, J=7.1 Hz, 2H), 3.85 (s, 3H), 2.36 (s, 3H), 1.44 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.10, 159.53, 141.85, 140.94, 139.42, 132.64, 129.51, 124.96, 118.14, 113.89, 99.11, 83.29, 62.84, 55.63, 21.86, 14.38; HRMS (ESI) calcd for C20H20NO3 [M+H]+ 322.1438, found 322.1443.

    (Z)-Ethyl 4-(4-fluorophenyl)-2-((4-methoxyphenyl)- imino)but-3-ynoate (1l): Using 15% solution of EtOAc in petroleum ether as eluent (55.3 mg, 85% yield). 1H NMR (500 MHz, CDCl3) δ: 7.55~7.50 (m, 2H), 7.49~7.43 (m, 2H), 7.08~7.04 (m, 2H), 6.98~6.94 (m, 2H), 4.46 (q, J=7.1 Hz, 2H), 3.86 (s, 3H), 1.45 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 164.82, 163.02, 162.85, 159.67, 141.82, 139.25, 134.89 (d, J=8.8 Hz), 124.91, 116.28 (d, J=22.3 Hz), 113.97, 97.38, 83.42, 62.99, 55.71, 14.44; HRMS (ESI) calcd for C19H17FNO3 [M+H]+ 328.1187, found 328.1196.

    (Z)-Methyl 2-((4-methoxyphenyl)imino)dec-3-ynoate (1m): Using 10% solution of EtOAc in petroleum ether as eluent (52.4 mg, 87% yield). 1H NMR (500 MHz, CDCl3) δ: 7.52~7.38 (m, 2H), 6.94~6.87 (m, 2H), 3.95 (s, 3H), 3.83 (s, 3H), 2.40 (t, J=7.0 Hz, 2H), 1.53 (dd, J=14.9, 7.2 Hz, 2H), 1.37~1.27 (m, 6H), 0.88 (t, J=7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.79, 159.37, 141.63, 139.55, 124.61, 113.88, 102.28, 75.34, 55.62, 53.65, 31.47, 28.72, 27.88, 22.71, 19.93, 14.23; HRMS (ESI) calcd for C18H24NO3 [M+H]+ 302.1751, found 302.1755.

    (Z)-Propyl 2-((4-methoxyphenyl)imino)dec-3-ynoate (1n): Using 10% solution of EtOAc in petroleum ether as eluent (55.9 mg, 85% yield). 1H NMR (500 MHz, CDCl3) δ: 7.46~7.40 (m, 2H), 6.92~6.88 (m, 2H), 4.30 (t, J=6.8 Hz, 2H), 3.83 (s, 3H), 2.39 (t, J=7.0 Hz, 2H), 1.81 (dt, J=14.4, 7.2 Hz, 2H), 1.56~1.50 (m, 2H), 1.35~ 1.24 (m, 6H), 1.01 (t, J=7.4 Hz, 3H), 0.87 (t, J=7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.28, 159.19, 141.86, 140.10, 124.48, 113.81, 101.96, 75.41, 68.20, 55.58, 31.47, 28.69, 27.89, 22.69, 22.12, 19.87, 14.22, 10.50; HRMS (ESI) calcd for C2H28NO3 [M+H]+ 330.2064, found 330.2081.

    A mixture of 1 (0.1 mmol, 1.0 equiv.), 3e (0.01 mmol, 5 mol%), 3Å MS (40 mg), and 4d (0.12 mmol, 1.2 equiv.) in the mixture of decane (1.0 mL) and mesitylene (1.0 mL) was stirred at room temperature under N2 for 4 h, and then directly purified by flash chromatography to give the desired product 2 by using solution of EtOAc in petroleum ether as eluent.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)dec-3-ynoate (2a): Using 5% solution of EtOAc in petroleum ether as eluent (28.4 mg, 89% yield). [α]D25+36.71 (c 1.28, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.81~6.76 (m, 2H), 6.69~6.65 (m, 2H), 4.70 (t, J=2.1 Hz, 1H), 4.26 (q, J=7.1 Hz, 2H), 3.74 (s, 3H), 2.17 (td, J=7.0, 2.1 Hz, 2H), 1.49~1.43 (m, 2H), 1.33~1.23 (m, 8H), 0.87 (t, J=7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.68, 153.42, 139.77, 116.12, 114.87, 85.59, 75.25, 62.29, 55.80, 50.34, 31.46, 28.57, 28.49, 22.71, 18.87, 14.24, 14.21; HRMS (ESI) calcd for C19H28NO3 [M+H]+ 318.2064, found 318.2072. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/hexane, V:V=25/75, 1.0 mL/ min, 249 nm), retention time: tminor=6.477 min, tmajor=9.070 min, ee=90%.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)dodec-3-ynoate (2b): Using 5% solution of EtOAc in petroleum ether as eluent (29.7 mg, 86% yield). [α]D25+32.51 (c 1.18, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.81~6.75 (m, 2H), 6.69~6.65 (m, 2H), 4.70 (t, J=2.2 Hz, 1H), 4.26 (q, J=7.1 Hz, 2H), 3.74 (s, 3H), 2.17 (td, J=7.1, 2.2 Hz, 2H), 1.49~1.43 (m, 2H), 1.33~1.23 (m, 13H), 0.88 (t, J=7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.75, 153.43, 139.87, 116.11, 114.92, 85.61, 75.30, 62.31, 55.85, 50.37, 32.04, 29.39, 29.27, 28.95, 28.57, 22.86, 18.91, 14.30, 14.28; HRMS (ESI) calcd for C21H32NO3 [M+H]+ 346.2377, found 346.2388. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/ hexane, V:V=25/75, 1.0 mL/min, 256 nm), retention time: trminor=5.617 min, tmajor=7.633 min, ee=98%.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)oct-3-ynoate (2c): Using 5% solution of EtOAc in petroleum ether as eluent (24.5 mg, 85% yield). [α]D25+49.62 (c 1.12, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.81~6.76 (m, 2H), 6.70~6.65 (m, 2H), 4.70 (t, J=2.2 Hz, 1H), 4.26 (qd, J=7.1, 1.2 Hz, 2H), 3.74 (s, 3H), 2.18 (td, J=7.0, 2.2 Hz, 2H), 1.49~1.41 (m, 2H), 1.39~1.32 (m, 2H), 1.29 (t, J=7.1 Hz, 3H), 0.87 (t, J=7.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.70, 153.42, 139.79, 116.14, 114.88, 85.55, 75.25, 62.29, 55.82, 50.37, 30.58, 21.97, 18.55, 14.23, 13.71; HRMS (ESI) calcd for C17H24NO3 [M+H]+ 290.1751, found 290.1764. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/he- xane, V:V=25/75, 1.0 mL/min, 241 nm), retention time: trminor=7.163 min, tmajor=10.507 min, ee=94%.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)-6-phenylhex-3- ynoate (2d): Using 5% solution of EtOAc in petroleum ether as eluent (29.3 mg, 87% yield). [α]D25+36.7 (c 1.01, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 7.39~7.32 (m, 2H), 7.31~7.26 (m, 2H), 7.25~7.20 (m, 1H), 7.20~7.14 (m, 2H), 6.87~6.82 (m, 2H), 4.41 (q, J=7.1 Hz, 2H), 3.82 (s, 3H), 2.87 (t, J=7.3 Hz, 2H), 2.71 (t, J=7.3 Hz, 2H), 1.41 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 163.26, 159.29, 141.61, 140.01, 139.68, 128.69, 128.59, 126.73, 124.58, 113.86, 100.67, 75.85, 62.85, 55.62, 34.09, 21.93, 14.40; HRMS (ESI) calcd for C20H22NO3 [M+H]+ 338.1751, found 338.1767. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/ hexane, V:V=25/75, 1.0 mL/min, 308 nm), retention time: trminor=11.233 min, tmajor=15.010 min, ee=95%.

    (S)-Ethyl 9-(benzyloxy)-2-((4-methoxyphenyl)amino)- non-3-ynoate (2e): Using 5% solution of EtOAc in petroleum ether as eluent (33.6 mg, 82% yield). [α]D25+32.71 (c 0.61, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 7.28~7.19 (m, 5H), 6.73~6.68 (m, 2H), 6.61~6.56 (m, 2H), 4.62 (t, J=2.1 Hz, 1H), 4.42 (s, 2H), 4.18 (q, J=7.1 Hz, 2H), 3.66 (s, 3H), 3.36 (t, J=6.6 Hz, 2H), 2.11 (td, J=7.0, 2.2 Hz, 2H), 1.55~1.49 (m, 2H), 1.45~1.39 (m, 2H), 1.37~1.30 (m, 2H), 1.21 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.69, 153.43, 139.84, 138.84, 128.56, 127.81, 127.71, 116.11, 114.91, 85.33, 75.47, 73.10, 70.44, 62.32, 55.84, 50.35, 29.44, 28.39, 25.57, 18.87, 14.27; HRMS (ESI) calcd for C25H32NO4 [M+H]+ 410.2326, found 410.2329. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/he- xane, V:V=25/75, 1.0 mL/min, 205 nm), retention time: trminor=12.743 min, tmajor=18.110 min, ee=93%.

    (S)-Ethyl 8-(1, 3-dioxolan-2-yl)-2-((4-methoxyphenyl)- amino)oct-3-ynoate (2f): Using 20% solution of EtOAc in petroleum ether as eluent (28.9 mg, 80% yield). [α]D25+49.71 (c 1.6, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.80~6.76 (m, 2H), 6.69~6.65 (m, 2H), 4.81 (t, J=4.8 Hz, 1H), 4.69 (s, 1H), 4.26 (q, J=7.1 Hz, 2H), 4.18 (s, 1H), 3.97~3.92 (m, 2H), 3.87~3.81 (m, 2H), 3.74 (s, 3H), 2.19 (td, J=6.9, 2.1 Hz, 2H), 1.65~1.61 (m, 2H), 1.55~1.45 (m, 4H), 1.30 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.69, 153.42, 139.86, 116.11, 114.93, 104.64, 85.18, 75.55, 65.05, 62.34, 55.85, 50.36, 33.51, 28.45, 23.43, 18.86, 14.27; HRMS (ESI) calcd for C20H28NO5 [M+H]+ 362.1962, found 362.1981; HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/ hexane, V:V=25/75, 1.0 mL/min, 241 nm), retention time: tminor=14.260 min, trmajor=20.310 min, ee=92%.

    (S)-Ethyl 4-(cyclohex-1-en-1-yl)-2-((4-methoxyphenyl)- amino)but-3-ynoate (2g): Using 5% solution of EtOAc in petroleum ether as eluent (28.5 mg, 91% yield). [α]D25+98.74 (c 0.66, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.81~6.77 (m, 2H), 6.71~6.65 (m, 2H), 6.10 (dt, J=3.7, 2.0 Hz, 1H), 4.82 (s, 1H), 4.27 (q, J=7.1 Hz, 2H), 3.75 (s, 3H), 2.10~2.00 (m, 4H), 1.63~1.53 (m, 4H), 1.30 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.46, 153.44, 139.80, 136.32, 120.00, 116.14, 114.92, 86.39, 81.51, 62.39, 55.85, 50.76, 29.09, 25.79, 22.36, 21.58, 14.27; HRMS (ESI) calcd for C19H24NO3 [M+H]+ 314.1751, found 314.1761; HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/ hexane, V:V=25/75, 1.0 mL/min, 248 nm), retention time: tminor=8.183 min, tmajor=10.597 min, ee=95%.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)-4-(trimethylsilyl)- but-3-ynoate (2h): Using 3% solution of EtOAc in petroleum ether as eluent (25.0 mg, 82% yield). [α]D25+110.62 (c 1.16, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.80~6.77 (m, 2H), 6.70~6.66 (m, 2H), 4.72 (s, 1H), 4.33~4.24 (m, 2H), 4.19 (s, 1H), 3.75 (s, 3H), 1.30 (t, J=7.1 Hz, 3H), 0.14 (s, 9H); 13C NMR (125 MHz, CDCl3) δ: 169.08, 153.57, 139.72, 116.26, 114.91, 100.19, 90.00, 62.47, 55.87, 51.17, 14.21, -0.09; HRMS (ESI) calcd for C16H24NO3Si [M+H]+ 306.1520, found 306.1511; HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/hexane, V:V=25/75, 1.0 mL/min, 248 nm), retention time: tminor=4.683 min, trmajor=5.693 min, ee=91%.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)-4-(thiophen-3- yl)but-3-ynoate (2i): Using 10% solution of EtOAc in petroleum ether as eluent (28.3 mg, 90% yield). [α]D25+108.71 (c 0.76, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 7.44 (dd, J=3.0, 1.1 Hz, 1H), 7.23 (dd, J=5.0, 3.0 Hz, 1H), 7.07 (dd, J=5.0, 1.1 Hz, 1H), 6.83~6.79 (m, 2H), 6.75~6.71 (m, 2H), 4.93 (s, 1H), 4.36~4.20 (m, 3H), 3.75 (s, 3H), 1.32 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.13, 153.59, 139.66, 130.15, 129.81, 125.48, 121.38, 116.22, 115.00, 84.04, 79.75, 62.61, 55.86, 50.85, 14.29; HRMS (ESI) calcd for C17H18NO3S [M+H]+ 316.1002, found 316.1020. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/he- xane, V:V=25/75, 1.0 mL/min, 246 nm), retention time: tminor=15.287 min, tmajor=21.230 min, ee=80%.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)-4-phenylbut-3- ynoate (2j): Using 15% solution of EtOAc in petroleum ether as eluent (27.2 mg, 88% yield). [α]D25+107.82 (c 1.22, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 7.47~7.40 (m, 2H), 7.35~7.28 (m, 3H), 6.86~6.81 (m, 2H), 6.79~6.74 (m, 2H), 4.98 (s, 1H), 4.33 (q, J=7.1 Hz, 2H), 3.77 (s, 3H), 1.35 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.14, 153.54, 139.61, 132.07, 128.83, 128.41, 122.32, 116.22, 114.95, 84.50, 84.36, 62.57, 55.81, 50.80, 14.26; HRMS (ESI) calcd for C19H20NO3 [M+H]+ 310.1438, found 310.1442. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/he- xane, V:V=25/75, 1.0 mL/min, 306 nm), retention time: tminor=11.110 min, tmajor=13.573 min, ee=89%.

    (S)-Ethyl 2-((4-methoxyphenyl)amino)-4-(p-tolyl)but-3- ynoate (2k): Using 10% solution of EtOAc in petroleum ether as eluent (27.1 mg, 84% yield). [α]D25+104.8 (c 0.9, CHCl3) 1H NMR (500 MHz, CDCl3) δ: 7.32 (d, J=8.0 Hz, 2H), 7.10 (d, J=7.9 Hz, 2H), 6.87~6.80 (m, 2H), 6.80~6.73 (m, 2H), 4.97 (s, 1H), 4.32 (q, J=7.1 Hz, 2H), 3.75 (s, 3H), 2.34 (s, 3H), 1.33 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.19, 153.44, 139.64, 138.93, 131.90, 129.12, 119.19, 116.13, 114.88, 84.61, 83.63, 62.45, 55.73, 50.76, 21.59, 14.20; HRMS (ESI) calcd for C20H22NO3 [M+H]+ 324.1594, found 324.1599. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, i-PrOH/hexane, V:V=20/80, 1.0 mL/min, 255 nm), retention time: tminor=7.047 min, tmajor=8.553 min, ee=86%.

    (S)-Ethyl 4-(4-fluorophenyl)-2-((4-methoxyphenyl)- amino)but-3-ynoate (2l): Using 15% solution of EtOAc in petroleum ether as eluent (28.4 mg, 87% yield). [α]D25+96.85 (c 0.96, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 7.41~7.32 (m, 2H), 7.01~6.96 (m, 2H), 6.83~6.78 (m, 2H), 6.77~6.72 (m, 2H), 4.94 (s, 1H), 4.31 (q, J=7.1 Hz, 2H), 3.75 (s, 3H), 1.33 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.08, 162.91 (d, J=250.1 Hz), 153.63, 139.56, 134.09, 134.02, 118.43, 116.27, 115.85, 115.67, 115.00, 84.13, 83.50, 62.65, 55.86, 50.80, 14.30; HRMS (ESI) calcd for C19H19FNO3 [M+H]+ 328.1343, found 328.1359. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/hexane, V:V=25/75, 1.0 mL/min, 220 nm), retention time: tminor=11.970 min, tmajor=14.250 min, ee=88%.

    (S)-Methyl 2-((4-methoxyphenyl)amino)dec-3-ynoate (2m): Using 5% solution of EtOAc in petroleum ether as eluent (27.2 mg, 90% yield). [α]D25+45.78 (c 1.08, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.81~6.77 (m, 2H), 6.69~6.65 (m, 2H), 4.73 (t, J=2.1 Hz, 1H), 4.17 (s, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 2.17 (td, J=7.1, 2.1 Hz, 2H), 1.50~1.43 (m, 2H), 1.34~1.23 (m, 6H), 0.88 (t, J=7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 170.22, 153.47, 139.77, 116.10, 114.92, 85.77, 75.13, 55.81, 53.21, 50.21, 31.45, 28.59, 28.48, 22.70, 18.88, 14.20; HRMS (ESI) calcd for C18H26NO3 [M+H]+ 304.1907, found 304.1914. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/hexane, V:V=25/75, 1.0 mL/min, 206 nm), retention time: tminor=10.213 min, tmajor=14.787 min, ee=93%.

    (S)-Propyl 2-((4-methoxyphenyl)amino)dec-3-ynoate (2n): Using 5% solution of EtOAc in petroleum ether as eluent (27.5 mg, 83% yield). [α]D25+21.88 (c 1.1, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 6.80~6.75 (m, 2H), 6.69~6.64 (m, 2H), 4.71 (t, J=2.2 Hz, 1H), 4.20~4.13 (m, 2H), 3.73 (s, 3H), 2.17 (td, J=7.1, 2.2 Hz, 2H), 1.72~1.65 (m, 2H), 1.49~1.43 (m, 2H), 1.34~1.22 (m, 6H), 0.94 (t, J=7.4 Hz, 3H), 0.87 (t, J=7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ: 169.77, 153.34, 139.84, 115.98, 114.84, 85.42, 75.34, 67.71, 55.74, 50.24, 31.44, 28.55, 28.47, 22.66, 22.06, 18.82, 14.17, 10.36; HRMS (ESI) calcd for C20H30NO3 [M+H]+ 332.2220, found 332.2218. HPLC: the ee value was determined by HPLC analysis (Chiralcel AD-H, i-PrOH/hexane, V:V=25:75, 1.0 mL/min, 255 nm), retention time: tminor=7.093 min, tmajor=11.487 min, ee=92%.

    Supporting Information  1H NMR and 13C NMR spectra and HPLC spectra of 1a~1n and 2a~2n. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.


    1. [1]

      (a) Afagh, N. A.; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262.
      (b) Mahatthananchai, J.; Dumas, A.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 10954.
      (c) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc. Rev. 2013, 42, 9155.

    2. [2]

      (a) Hoffmann, R. W. Synthesis 2006, 3531.
      (b) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193.

    3. [3]

      Trost, B. M. Science 1991, 254, 1471. doi: 10.1126/science.1962206

    4. [4]

      Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40. doi: 10.1021/ar700155p

    5. [5]

      (a) Barrett, G. C. Chemistry and Biochemistry of the Amino Acids, Chapman & Hall, London, 1985.
      (b) Williams, R. M. Synthesis of Optically Active α-Amino Acids, Pergamon, Oxford, 1989.
      (c) Duthaler, R. O. Tetrahedron 1994, 50, 1539.
      (d) Hegedus, L. S. Acc. Chem. Res. 1995, 28, 299.
      (e) Chin, J. W.; Cropp, T. A.; Anderson, J. C.; Mukherji, M.; Zhang, Z.; Schultz, P. G. Science 2002, 301, 964.
      (f) Wang, L.; Schultz, P. G. Angew. Chem., Int. Ed. 2004, 44, 34.
      (g) Cropp, T. A.; Schultz, P. G. Trends Genet. 2004, 20, 625.

    6. [6]

      (a) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
      (b) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
      (c) Lygo, B.; Angrews, B. I. Acc. Chem. Res. 2004, 37, 518.
      (d) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.

    7. [7]

      (a) Abdulganeeva, S. A.; Erzhanov, K. B. Russ. Chem. Rev. 1991, 60, 676.
      (b) Williams, R. M.; Aldous, D. J.; Aldous, S. C. J. Org. Chem. 1990, 55, 4657.
      (c) Castelhano, A. L.; Horne, S.; Taylor, G. J.; Billedeau, R.; Krantz, A. Tetrahedron 1988, 44, 5451.

    8. [8]

      (a) Ji, J.-X.; Wu, J.; Chan, A. S. C. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11196.
      (b) Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903.

    9. [9]

      (a) Kang, Q.; Zhao, Z.-A.; You, S.-L. Org. Lett. 2008, 10, 2031.
      (b) Chen, M.-W.; Wu, B.; Chen, Z.-P.; Shi, L.; Zhou, Y.-G. Org. Lett. 2016, 18, 4650.

    10. [10]

      (a) Ge, X.; Chen, X.; Qian, C. Chin. J. Org. Chem. 2016, 36, 1208(in Chinese).
      (葛新, 陈新志, 钱超, 有机化学, 2016, 36, 1208.)
      (b) Hu, S.-B.; Chen, M.-W.; Zhai, X.-Y.; Zhou, Y.-G. Acta Chim. Sinica 2018, 76, 103(in Chinese).
      (胡书博, 陈木旺, 翟小勇, 周永贵, 化学学报, 2018, 76, 103.)
      (c) Liu, Y.; Dong, X.-Q.; Zhang, X. Chin. J. Org. Chem. 2020, 40, 1096(in Chinese).
      (刘元华, 董秀琴, 张绪穆, 有机化学, 2020, 40, 1096.)
      (d) Dou, X.; Liu, D.; Zhang, W. Chin. J. Pharm. 2020, 51, 551(in Chinese).
      (窦骁勇, 刘德龙, 张万斌, 中国医药工业杂志, 2020, 51, 551.)

    11. [11]

      Zhang, L.; Zhu, R.; Feng, A.; Zhao, C.; Chen, L.; Feng, G.; Liu, L. Chem. Sci. 2020, 11, 4444. doi: 10.1039/D0SC00944J

    12. [12]

      (a) Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem. Res. 2015, 48, 388.
      (b) Zhu, C.; Falck, J. R. ChemCatChem 2011, 3, 1850.
      (c) Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180.
      (d) Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem., Int. Ed. 2011, 50, 8180.
      (e) Horiguchi, K.; Yamamoto, E.; Saito, K.; Yamanaka, M.; Akiyama, T. Chem.-Eur. J. 2016, 22, 8078.
      (f) Kim, K.-H.; Akiyama, T.; Cheon, C.-H. Chem.-Asian J. 2016, 11, 274.
      (g) Wen, W.; Zeng, Y.; Peng, L.-Y.; Fu, L.-N.; Guo, Q.-X. Org. Lett. 2015, 17, 3922.

    13. [13]

      Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2011, 50, 8180. doi: 10.1002/anie.201103240

    14. [14]

      Chen, X. M.; Li, X. S.; Chan, A. S. C. Chin. Chem. Lett. 2009, 20, 407. doi: 10.1016/j.cclet.2008.12.030

    15. [15]

      Ji, J.-X.; Au-Yeung, T. T.-L.; Wu, J.; Yip, C. W.; Chan, A. S. C. Adv. Synth. Catal. 2004, 346, 42. doi: 10.1002/adsc.200303148

  • Scheme 1  Overview of chemo- and enantioselective reduction of β, γ-alkynyl α-imino esters

    Scheme 2  Synthetic route of compound 1

    Table 1.  Reaction condition optimizationa

    Entry Solvent R (3) Ar (4) Yieldb/% eec/%
    1 Hexane 4-CF3C6H4 (3a) Ph (4a) 71 70
    2 Hexane 3, 5-(CF3)2C6H3 (3b) Ph (4a) 74 53
    3 Hexane 1-Naphthyl (3c) Ph (4a) 65 33
    4 Hexane 2-Naphthyl (3d) Ph (4a) 68 50
    5 Hexane 2, 4, 6-iPr3C6H2 (3e) Ph (4a) 72 76
    6 Hexane 2, 4, 6-(cyclo-C6H11)3C6H2 (3f) Ph (4a) 62 71
    7 Hexane SiPh3 (3g) Ph (4a) < 5 n.d.
    8 Hexane 9-Anthryl (3h) Ph (4a) 53 50
    9 Hexane 2, 4, 6-iPr3C6H2 (3e) 4-ClC6H4 (4b) 60 70
    10 Hexane 2, 4, 6-iPr3C6H2 (3e) 4-MeOC6H4 (4c) 64 47
    11 Hexane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 67 79
    12 Hexane 2, 4, 6-iPr3C6H2 (3e) 2-Naphthyl (4e) 47 65
    13 Hexane 2, 4, 6-iPr3C6H2 (3e) 9-Anthryl (4f) < 5 n.d.
    14 Cyclohexane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 73 69
    15 CH2Cl2 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 89 7
    16 THF 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) < 5 n.d.
    17 Ethyl acetate 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 76 55
    18 Toluene 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 85 71
    19 Mesitylene 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 92 85
    20 Pentane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 52 68
    21 Decane 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 78 86
    22 Decane/mesitylene (V:V=8:2) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 80 86
    23 Decane/mesitylene (V:V=7:3) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 84 87
    24 Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 89 90
    25d Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 75 68
    26e Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 80 79
    27f Decane/mesitylene (V:V=1:1) 2, 4, 6-iPr3C6H2 (3e) 1-Naphthyl (4d) 82 81
    a Reaction conditions: 1a (0.1 mmol), 3 (5 mol%), 4 (0.12 mmol), and 3Å molecular sieves (40 mg) in solvent (2.0 mL) at room temperature for 4 h. b Yield of the isolated product. c Determined by chiral HPLC analysis. d Reaction without molecular sieves. e 4Å molecular sieves was used. f 5Å molecular sieves. n.d.=not determined.
    下载: 导出CSV

    Table 2.  Scope of β, γ-alkynyl α-imino esters

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  649
  • HTML全文浏览量:  118
文章相关
  • 发布日期:  2020-09-25
  • 收稿日期:  2020-05-15
  • 修回日期:  2020-06-03
  • 网络出版日期:  2020-06-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章