Synthesis and Cytotoxicity Evaluation of Dehydroabietic Acid Derivatives Bearing Nitrate Moiety

Fangyao Li Lin Huang Xiaoqun Zhou Qian Li Xianli Ma Wengui Duan Xiu Wang

Citation:  Li Fangyao, Huang Lin, Zhou Xiaoqun, Li Qian, Ma Xianli, Duan Wengui, Wang Xiu. Synthesis and Cytotoxicity Evaluation of Dehydroabietic Acid Derivatives Bearing Nitrate Moiety[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2845-2854. doi: 10.6023/cjoc202003062 shu

去氢枞酸硝酸酯类化合物的合成及细胞毒性评价

    通讯作者: 段文贵, wgduan@gxu.edu.cn
  • 基金项目:

    广西农产资源化学与生物技术重点实验室开放基金 2019KF06

    广西自然科学基金 2018GXNSFAA281200

    桂林医学院中青年教职工科研基础能力提升 2018glmcy015

    广西林产化学与工程重点实验室开放基金课题 GXFC18-02

    广西自然科学基金(Nos.2018GXNSFAA138165, 2018GXNSFAA281200)、省部共建药用资源化学与药物分子工程国家重点实验室资助课题(广西师范大学)(No.CMEMR2019-B02)、广西林产化学与工程重点实验室开放基金课题(No.GXFC18-02)、广西农产资源化学与生物技术重点实验室开放基金(No.2019KF06)、广西高等学校千名中青年骨干教师培育计划、广西高校中青年科研基础能力提升项目(No.2019KY051)和桂林医学院中青年教职工科研基础能力提升(No.2018glmcy015)资助项目

    省部共建药用资源化学与药物分子工程国家重点实验室资助课题(广西师范大学) CMEMR2019-B02

    广西自然科学基金 2018GXNSFAA138165

    广西高校中青年科研基础能力提升项目 2019KY051

摘要: 为寻找高效的抗肿瘤活性化合物,设计并合成了一系列新型的去氢枞酸硝酸酯类化合物.采用噻唑蓝(MTT)法测定目标化合物对鼻咽癌(CNE-2)、肝癌(HepG2,BEL-7402)和宫颈癌(HeLa)细胞株以及人正常肝细胞株(HL-7702)和鼻咽上皮细胞株(NP69)的细胞毒活性.结果表明,大多数杂合物的细胞毒性明显高于母体化合物.其中,12-溴去氢枞酸-3'-硝氧基丙酯(5j)对鼻咽癌CNE-2细胞株的抑制增殖活性优于顺铂,IC50值为(8.36±0.14)μmol/L,12,14-二硝基去氢枞酸-3'-硝氧基丙酯(5n)对肝癌BEL-7402细胞株的IC50值为(11.23±0.21)μmol/L.同时,目标化合物对人正常肝细胞株(HL-7702)和鼻咽上皮细胞株(NP69)表现出较低的细胞毒性.此外,对所有硝酸酯的NO释放量的测试表明,在大多数情况下,细胞毒性与CNE-2细胞株细胞内NO的释放水平呈正相关.

English

  • Rosins are the solid form of resins obtained from pines or similar types of plants belonging to the conifer family and they are important natural resources of China. Pine resin acids are the main components of rosin, and they have generated signcant interest from the medicinal, pharmacological and forestry communities for their wide variety of interesting biological activities.[1] Dehydroabietic acid (DHAA) is a natural occurring diterpenic resin acid which can be easily obtained from Pinus rosin or from commercial disproportionated rosin.[2] DHAA and its derivatives exhibited extensive pharmaceutical activities, such as antitumor, [3-7] antimicrobial, [8-10] antiprotozoal, [11] antiviral, [12] antifungal, [13-14] gastroprotective, [15] insecticidal[16] anti-inflammatory[17] antiulcer, [18] and anxiolytic[19] activities. Furthermore, DHAA was reported to show properties of enhancing the inhibitory activity of an anticancer drug in cervical carcinoma cells, hepatocellular carcinoma cells, or breast cancer cells. These results suggest that DHAA is a promising starting material for the discovery of novel anticancer agents.

    In previous study, numerous reports demonstrate that nitric oxide (NO) is a multifunctional signaling and/or effector molecule with numerous functions in vasodilation, neurotransmission, the immune system, and cell apoptosis.[20-21] It has been shown that high levels of NO can directly kill tumor cells, induce tumor cell apoptosis, impair tumor cell proliferation and invasion ability via nitric oxide-releasing, and prevent tumor cells from metastasizing and increase tumor cell response to radiochemotherapy. Particularly, it is reported that numerous NO-donating hybrids have the potential to provide novel anticancer candidates with low toxicity and high efficacy against drug-resistant cancers.[22-27]

    Enlightened by these findings, together with our previous studies on the modification of natural products, [28-31] a modification via integrating DHAA and nitrate pharmacophore into one molecule to generate a novel dehydroabietic acid NO donor hybrids was conducted. The screening of the cytotoxicity of these hybrids against four human cancer cell lines and normal human cell were carried on. The NO released amounts of these hybrids by Griess assay to investigate the relationship between NO released amounts and cytotoxic activities were also detected.

    The synthetic route of these compounds is depicted in Scheme 1. Using dehydroabietic acid as starting material, the key intermediates 12-bromodehydroabietic acid (2) and 12, 14-dinitrodehydroabietic acid (3) were synthesized by reaction of DHAA with bromides and fuming nitric acid, respectively. Then they reacted with dibromohydrocarbon and silver nitrate to obtain the dehydroabietic acid-nitrate conjugates 5a~5r in a good yield. Synthetic compounds 5 need to be carried out protected from light.

    Scheme 1

    Scheme 1.  Synthetic route for dehydroabietic acid-based nitrate compounds 5a~5r

    The FT-IR spectra of target compounds 5a~5r exhibited characteristic moderate absorption bands at about 1720 cm-1 attributed to the stretching vibrations of C=O. The bands at about 1630 and 1280 cm-1 were attributed to the stretching vibration of ONO2. The bands at 1600~1450 cm-1 were assigned to the vibration of the skeleton in benzene rings. The bands at 2950~2800 cm-1 were assigned to the stretching vibrations of C—H in methyl or methylene. The 1H NMR spectra of the target compounds 5a~5r showed characteristic signals at δ 7.56~6.89 assigned to the aromatic protons. The 13C NMR spectra of the target compounds 5a~5r showed peaks for C=O atδ 179~177, and for benzene rings at δ 152~121.

    Given that nasopharyngeal carcinoma, liver cancer and cervical cancer are very common cancer types, CNE-2, HepG2, BEL-7402 and HeLa cells were chosen. (3-(4, 5- Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was applied to determine the effects of dehydroabietic acid nitrates on the growth inhibition against cancer cells. The results were listed in Table 1.

    Table 1

    Table 1.  Cytotoxic activity of dehydroabietic acid-based nitrate compounds
    下载: 导出CSV
    Compd. IC50a/(μmol•L-1)
    CNE-2 HepG2 BEL-7402 HeLa HL-7702 NP69
    DHAA 88.64±0.73 80.36±0.84 46.70±0.55 37.40±0.64 > 100 > 100
    4i 75.84±1.42 61.55±0.37 53.18±1.83 88.28±3.12 > 100 > 100
    4j 60.33±2.54 45.96±0.77 69.24±1.63 73.04±1.08 > 100 > 100
    4k 42.29±0.86 57.58±1.26 48.35±0.48 50.28±0.57 > 100 > 100
    5a 43.88±0.15 50.44±0.08 38.25±0.44 44.32±0.28 > 100 > 100
    5b 35.64±0.48 66.93±0.20 42.11±0.64 38.12±0.15 > 100 > 100
    5c 33.09±0.23 57.34±0.15 24.02±0.62 40.10±0.23 > 100 > 100
    5d 36.32±0.57 34.62±0.17 32.22±0.37 33.44±0.72 > 100 > 100
    5e 20.63±0.66 25.84±0.22 50.78±0.32 14.14±0.21 > 100 > 100
    5f 25.44±0.74 21.94±0.54 14.88±0.30 27.34±0.64 > 100 > 100
    5g 27.26±0.55 30.17±0.32 18.40±0.24 67.33±0.46 > 100 > 100
    5h 18.20±0.16 20.46±0.18 17.52±0.64 55.45±0.40 74.39±0.19 89.35±0.56
    5i 34.16±0.43 30.64±0.24 44.72±0.46 65.15±0.74 > 100 > 100
    5j 8.36±0.14 13.00±0.61 55.33±0.42 23.36±0.44 > 100 > 100
    5k 16.84±0.34 8.83±0.65 35.14±0.13 12.06±0.52 87.66±0.43 > 100
    5l 22.33±0.56 15.29±0.42 38.78±0.36 7.88±0.58 > 100 > 100
    5m 9.24±0.40 34.88±0.10 32.47±0.42 8.42±0.70 > 100 > 100
    5n 66.89±0.67 10.40±0.27 11.23±0.21 15.16±0.81 88.18±0.23 > 100
    5o 25.00±0.11 30.53±0.82 14.66±0.40 42.51±0.18 > 100 > 100
    5p 15.66±0.42 22.08±0.45 44.05±0.30 14.06±0.16 > 100 > 100
    5q 9.63±0.33 13.90±0.16 33.88±0.08 4.57±0.41 65.28±0.35 92.86±0.75
    5r 20.87±0.08 28.66±0.43 18.93±0.37 34.78±0.13 > 100 > 100
    Cisplatin 8.75±0.24 6.42±0.18 12.68±0.33 1.94±0.20 20.76±0.83 10.74±0.52
    a Data represent the means±S.D. from three independent experiments.

    As tabulated in Table 1, most of dehydroabietic acid nitrates were more potent than the parent compounds dehydroabietic acid and displayed moderate cytotoxicity effects. It is found that compounds 5j and 5n showed significant inhibition enhancement against CNE-2 and BEL- 7402, respectively. Compared with DHAA, the inhibition activity of 5j against CNE-2 was increased by 10 times with IC50 value of (8.36±0.14) μmol/L, which was the most active compound against CNE-2 cancer cell amongst all the tested derivatives; While 5n exhibited the best inhibition activity against BEL-7402 cancer cells with IC50 value of (11.23±0.21) μmol/L, which was more active than cisplatin. Most impressively, the cytotoxicity of dehydroabietic acid nitrates is dependent on the length, kind of linkers and the substituent in benzene ring. For both CNE-2 and HepG2 cancer cells, the cytotoxicity of nitrate with unsaturated carbon chains is slightly better than that of saturated carbon chains, and the compounds with bromine substitution at position-12 exhibited greater potency than without substituents. The most of compounds with nitro substitution at position-12 and position-14 exhibited significant inhibition enhancement against the growth of all the tested cancer cells. Compound 5k showed the best inhibition activity against HepG2 with IC50 value of (8.83±0.65) μmol/L, which was 9 times more active than the parent compound. Futhermore, it was found that the cytotoxicities of dehydroabietic acid-nitrate hybrid molecules against human normal liver cell line HL-7702 and nasopharyngeal epithelial cell NP69 are low, in which the IC50 values are over (65.28±0.35) μmol/L.

    To explore the association between NO release amounts of these nitrates and their cytotoxic activity, the NO release levels of these nitrates in vitro were detected using nitrate/nitrite assay. Thus, we decided to evaluate the cellular levels of NO of all nitrates at 4 mmol/L for 24 h. As shown in Figure 1, it was observed that the nitrates designed in this study could produce different levels of NO intracellularly which generally agreed with the cytotoxic activity.

    Figure 1

    Figure 1.  NO released amounts of the target compounds in CNE-2 cells for 24 h (mean±SD, n=3)

    In conclusion, eighteen novel nitrates derivatives have been designed and synthesized using dehydroabietic acid as a starting material. All the compounds were confirmed with FT-IR, ESI-MS, 1H NMR, 13C NMR and elemental analysis. Their cytotoxic activities against CNE-2, HepG2, BEL-7402 and HeLa cancer cell lines were determined. The preliminary bioassay showed that compound 5j was demonstrated as the most potent inhibitor against CNE-2 cell line with IC50 value of (8.36±0.14) μmol/L; while 5n was confirmed as the most potent agent against BEL-7402 cancer cells with IC50 value of (11.23±0.21) μmol/L. NO released amounts revealed that the potent compounds which exhibited high cytotoxic activities consistently produced high levels of NO in CNE-2. Therefore, the nitrate-hybrids could be a promising strategy for the synthesis of antitumor dehydroabietic acid derivatives.

    All the chemicals and reagents were commercially available and used without further purification. Routine thin-layer chromatography (TLC) was performed on silica gel plates (silica gel GF254 from Qingdao Haiyang Chemical Co., Ltd., Qingdao, China), preparative flash column chromatography was performed on the 200~300 mesh silica gel (Qingdao Haiyang Chemical Co. Ltd., Qingdao, Shandong, China). Melting points were recorded on an X-4 microscope melting point apparatus (Beijing Tech Instrument Co., Ltd., Beijing, China) without calibration. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance Ⅲ HD 600 MHz spectrometer (Bruker Co., Ltd., Zurich, Switzerland) at room temperature with TMS as an internal standard and CDCl3 as solvents. Mass spectra were recorded on a liquid chromatograph mass spectrometer (Shimazu Co. Ltd., Kyoto, Japan). Elemental analyses were carried out on a PE 2400II elemental analyzer (Perkin Elmer Instruments Co., Ltd., USA). The optical density was measured on a microplate reader (BioTek Instruments Co., Ltd., USA).

    4.2.1   Synthetic route for intermediates 2

    According to literature method, [32] dehydroabietic acid (12.0 g, 40 mmol) was dissolved in glacial acetic acid (40 mL), then bromine (3.2 mL) dissolved in glacial acetic acid (20 mL) was added slowly to the above solution. The reaction solution continued stirring for 3 h at room temperature. Standing overnight, the reaction (pH=6) was adjusted with concentrated ammonia water, the sediments was filtered and recrystallized with 65% ethanol (50 mL) to obtain compound 2 (yield 63.8 %).

    3.2.2   Synthetic route for intermediates 3

    According to literature method, [33] to a mixture of concentrated sulfuric acid (60 mL) and fuming nitric acid (40 mL) cooled in ice bath, dehydroabietic acid (14 g) was added in batches. The mixture was stirred and allowed to come to room temperature. After completion of the reaction, the mixture slowly poured into 900 mL of ice water. Standing overnight, the reaction was drained and washed with distilled water until neutral. The crude products were recrystallized with ethanol three times to give compound 3 (yield 70.4%).

    3.2.3   Synthetic route for intermediates 4a~4r

    1, 12-Bromodehydroabietic acid (2) or 12, 14-dinitrode- hydroabietic acid (3) (21.12 mmol), dibromoalkane (40.00 mmol), and anhydrous K2CO3 (2.91 g) were added to 40 mL of N, N-dimethylformamide (DMF) and stired for 6 h at 40 ℃. After the reaction, the mixture was poured into cold water and extracted with ethyl acetate (40 mL×3), and then the combined organic layer was washed with saturated salt water and dried (Na2SO4) overnight. The solution was concentrated with a rotary evaporator, the intermediates 4a~4r were purified by silica gel chromatography with a mixture of petroleum ether and ethyl acetate (V:V=20:1) as eluent.

    Dehydroabietic acid-2'-bromoethyl ester (4a): White solid, yield 78.6%. m.p. 46.2~49.4 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.22 (d, J=8.4 Hz, 1H, H-11), 7.06 (d, J=8.4 Hz, 1H, H-12), 6.95 (s, 1H, H-14), 4.50~4.37 (m, 2H, H-21), 3.57~3.54 (t, J=6.0 Hz, 2H, H-22), 3.01~2.97 (m, 1H, H-15), 2.94~2.85 (m, 2H, H-7), 2.33~2.37 (m, 2H, He-1, H-5), 1.92~1.71 (m, 5H, H-2, H-3 and He-6), 1.47~1.57 (m, 2H, Ha-1, Ha-6), 1.35 (s, 3H, H-19), 1.28 (s, 3H, H-20), 1.27 (d, J=1.8 Hz, 6H, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 179.6, 148.2, 147.2, 136.1, 128.4, 125.6, 125.4, 65.5, 49.3, 46.1, 39.4, 38.4, 38.1, 34.9, 30.5, 25.5, 23.3, 20.1, 18.0; IR (KBr) ν: 2867, 1733 (C=O), 1496, 1498, 1387, 1243, 1172, 1006, 821, 682 cm-1. Anal. calcd for C22H31BrO2: C 64.86, H 7.67; found C 64.79, H 7.63.

    Dehydroabietic acid-3'-bromopropyl ester (4b): Color- less liquid, yield 75.4%. 1H NMR (600 MHz, CDCl3) δ: 7.20 (d, J=8.2 Hz, 1H, H-11), 7.04 (d, J=8.1 Hz, 1H, H-12), 6.92 (s, 1H, H-14), 4.24 (ddd, J=17.5, 11.0, 5.3 Hz, 2H, H-21), 3.47 (t, J=6.5 Hz, 2H, H-23), 2.91 (dd, J=10.6, 5.3 Hz, 2H, H-7), 2.86 (dt, J=13.8, 7.0 Hz, 1H, H-15), 2.34 (d, J=12.8 Hz, 1H, He-1), 2.26 (dd, J=12.5, 2.1 Hz, 1H, H-5), 2.22~2.17 (m, 2H, H-22), 1.94~1.69 (m, 5H, H-2, H-3, He-6), 1.53 (t, J=12.5 Hz, 1H, Ha-1), 1.43 (dtd, J=8.0, 6.0, 2.5 Hz, 1H, Ha-6), 1.31 (s, 3H, H-19), 1.26 (d, J=1.8 Hz, 6H, H-16, H-17), 1.24 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 178.4, 146.8, 145.8, 134.6, 127.0, 124.2, 124.0, 62.3, 47.8, 44.9, 37.9, 37.0, 36.7, 33.6, 33.5, 31.7, 31.6, 30.1, 29.5, 25.3, 24.5, 24.0, 21.8, 18.6, 16.5; IR (KBr) ν: 2916, 1724 (C=O), 1498, 1458, 1385, 1238, 1174, 1125, 1037, 883, 822 cm-1. Anal. calcd for C23H33BrO2: C 65.55, H 7.89; found C 65.58, H 7.84.

    Dehydroabietic acid-4'-bromobutyl ester (4c): Colorless liquid, yield 74.3%. 1H NMR (600 MHz, CDCl3) δ: 7.17 (d, J=8.4 Hz, 1H, H-11), 7.01 (d, J=8.4 Hz, 1H, H-12), 6.90 (s, 1H, H-14), 4.15~4.06 (m, 2H, H-21), 3.43 (t, J=6.0 Hz, 2H, H-24), 2.89~2.87 (m, 2H, H-7), 2.86~2.81 (m, 1H, H-15), 2.30 (d, J=12.0 Hz, 1H, He-1), 2.25(d, J=12.0 Hz, 1H, H-5), 1.95~1.93 (m, 2H, H-22), 1.86~1.63 (m, 7H, H-2, H-3, He-6, H-23), 1.52~1.48 (m, 1H, Ha-1), 1.42~1.39 (m, 1H, Ha-6), 1.28 (s, 3H, H-19), 1.23~1.24 (d, J=7.2 Hz, 6H, H-16, H-17), 1.22 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 178.5, 146.9, 145.8, 134.6, 127.0, 124.2, 124.0, 64.0, 63.6, 47.7, 44.8, 38.0, 37.0, 36.7, 33.5, 33.0, 30.1 29.3, 27.4, 25.5, 25.3, 24.0, 21.8, 18.6, 16.6; IR (KBr) ν: 2933, 1722 (C=O), 1496, 1463, 1384, 1246, 1174, 1126, 1035, 887, 823 cm-1. Anal. calcd for C24H35BrO2: C 66.20, H 8.10; found C 66.25, H 8.12.

    Dehydroabietic acid-5'-bromoamyl ester (4d): Colorless liquid, yield 80.4%. 1H NMR (600 MHz, CDCl3) δ: 7.20 (d, J=8.4 Hz, 1H, H-11), 7.03 (d, J=8.4 Hz, 1H, H-12), 6.92 (s, 1H, H-14), 4.15~4.06 (m, 2H, H-21), 4.44~3.42 (m, 2H, H-25), 2.91~2.83 (m, 3H, H-7, H-15), 2.32 (d, J=11.4 Hz, 1H, He-1), 2.26 (d, J=12.0 Hz, 1H, H-5), 1.94~1.54 (m, 11H, H-2, H-3, He-6, H-22, H-23 and H-24), 1.45~1.35 (m, 2H, Ha-1 and Ha-6), 1.30 (s, 3H, H-19), 1.24~1.26 (m, 9H, H-16, H-17 and H-20); 13C NMR (150 MHz, CDCl3) δ: 178.6, 146.9, 145.7, 134.7, 126.9, 124.2, 124.0, 64.2, 47.7, 44.8, 38.0, 37.0, 36.7, 33.5, 33.4, 30.1, 25.2, 24.7, 24.0, 21.8, 18.6 16.5; IR (KBr) ν: 2908, 1722 (C=O), 1496, 1463, 1388, 1246, 1174, 1126, 1035, 887, 823, 723 cm-1. Anal. calcd for C25H37BrO2: C 66.81, H 8.30; found C 66.77, H 8.26.

    Dehydroabietic acid-6'-bromohexyl ester (4e): Colorless liquid, yield 58.6%. 1H NMR (600 MHz, CDCl3) δ: 7.20 (d, 1H, J=8.1 Hz, H-11), 7.03 (d, 1H, J=8.1 Hz, H-12), 6.91 (s, 1H, H-14), 4.14~4.06 (m, 2H, H-21), 3.45~3.41 (m, 2H, H-26), 2.90 (dd, J=8.9, 4.3 Hz, 2H, H-7), 2.85 (dt, J=13.8, 6.9 Hz, 1H, H-15), 2.33 (d, 1H, J=12.2 Hz, He-1), 2.27 (dd, J=12.5, 2.0 Hz, 1H, H-5), 1.89~1.42 (m, 15H, Ha-1, H-2, H-3, H-6, H-22, H-23, H-24 and H-25), 1.29 (s, 3H, H-19), 1.25 (d, J=6.9 Hz, 6H, H-16 and H-17), 1.24 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 178.6, 147.0, 145.7, 134.7, 126.9, 124.2, 124.0, 64.5, 47.7, 44.8, 38.0, 37.0, 36.7, 33.7, 33.5, 32.6, 30.2, 28.5, 27.8, 25.3, 24.0, 21.8, 18.6, 16.5; IR (KBr) ν: 2933, 1722 (C=O), 1462, 1384, 1246, 1176, 1126, 1007, 975, 825, 726 cm-1. Anal. calcd for C26H39BrO2: C 67.38, H 8.48; found C 67.37, H 8.51.

    Dehydroabietic acid-8′-bromooctyl ester (4f): Colorless liquid, yield 72.8%. 1H NMR (600 MHz, CDCl3) δ: 7.11 (d, J=8.2 Hz, 1H, H-11), 6.93 (d, J=8.4 Hz, 1H, H-12), 6.82 (s, 1H, H-14), 4.05~3.91 (m, 2H, H-21), 3.33 (q, J=6.8, 6.8 Hz, 2H, H-28), 2.82~2.72 (m, 3H, H-7 and H-15), 2.23 (d, J=12.6 Hz, 1H, He-1), 2.18 (dd, J=12.5, 1.9 Hz, 1H, H-5), 1.82~1.25 (m, 19H, Ha-1, H-2, H-3, H-6, H-22, H-23, H-24, H-25, H-26 and H-27), 1.19 (s, 3H, H-19), 1.16 (s, 3H, H-20), 1.14 (d, J=3.1 Hz, 6H, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.7, 147.0, 145.7, 134.7, 126.9, 124.2, 124.0, 64.6, 47.7, 44.8, 38.0, 37.0, 36.6, 34.0, 33.5, 32.8, 30.2, 29.0, 28.6, 28.6, 28.6, 28.1, 25.9, 25.3, 24.0, 21.8, 18.7, 16.5; IR (KBr) ν: 2929, 2860, 1722 (C=O), 1496, 1462, 1382, 1244, 1176, 1124, 1035, 975, 823 cm-1. Anal. calcd for C28H43BrO2: C 68.42, H 8.82; found C 68.45, H 8.86.

    Dehydroabietic acid-12'-bromodecyl ester (4g): Color- less liquid, yield 62.8%. 1H NMR (600 MHz, CDCl3) δ: 7.20 (d, J=8.2 Hz, 1H, H-11), 7.03 (d, J=8.2 Hz, 1H, H-12), 6.91 (s, 1H, H-14), 4.08 (dq, J=17.4, 6.6 Hz, 2H, H-21), 3.43 (t, J=6.9 Hz, 2H, H-32), 2.90 (dd, J=10.8, 5.2 Hz, 2H, H-7), 2.85 (dt, J=13.8, 7.0 Hz, 1H, H-15), 2.33 (d, J=12.2 Hz, 1H, He-1), 2.28 (dd, J=12.5, 2.0 Hz, 1H, H-5), 1.91~1.29 (m, 30H, Ha-1, H-2, H-3, H-6, H-19, H-22, H-23, H-24, H-25, H-26, H-27, H-28, H-29, H-30 and H-31), 1.25 (d, J=6.9 Hz, 6H, H-16, H-17), 1.24 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 178.7, 147.0, 145.7, 134.7, 127.9, 124.2, 123.9, 64.7, 47.7, 44.8, 38.0, 37.0, 36.6, 34.1, 33.5, 32.9, 30.2, 29.5, 29.5, 29.4, 29.2, 28.8, 28.7, 28.2, 26.0, 25.3, 24.0, 21.8, 18.7, 16.5; IR (KBr) ν: 3074, 2954, 2872, 1724 (C=O), 1490, 1460, 1382, 1242, 1176, 1122, 1035, 981, 916, 823 cm-1. Anal. calcd for C32H51BrO2: C 70.18, H 9.39; found C 70.15, H 9.42.

    Dehydroabietic acid-4'-bromobutenyl ester (4h): Color- less liquid, yield 53.7%. 1H NMR (600 MHz, CDCl3) δ: 7.23 (s, 1H, H-11), 7.06 (d, J=8.0 Hz, 1H, H-12), 6.94 (s, 1H, H-14), 5.83 (dd, J=17.1, 10.3 Hz, 2H, H-22, H-23), 5.13 (dd, J=24.5, 13.7 Hz, 2H, H-21), 4.18 (td, J=17.4, 6.7 Hz, 2H, H-24), 2.95~2.86 (m, 3H, H-7 and H-15), 2.35 (d, J=12.3 Hz, 1H, He-1), 2.31 (d, J=11.2 Hz, 1H, H-5), 1.91~1.75 (m, 5H, H-2, H-3, He-6), 1.58~1.53 (m, 1H, Ha-1), 1.50~1.46 (m, 1H, Ha-6), 1.32 (s, 3H, H-19), 1.28 (d, J=6.9 Hz, 6H, H-16, H-17), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 179.9, 148.4, 147.1, 136.2, 135.6, 128.4, 125.6, 125.4, 118.6, 65.1, 49.1, 46.2, 39.4, 38.4, 38.1, 34.9, 34.6, 31.6, 26.7, 25.4, 23.2, 20.1, 17.9; IR (KBr) ν: 2954, 2872, 1726 (C=O), 1496, 1460, 1382, 1240, 1174, 1120, 1033, 979, 927, 823 cm-1. Anal. calcd for C24H33BrO2: C 66.51, H 7.67; found C 66.55, H 7.65.

    12-Bromodehydroabietic acid-2'-bromoethyl ester (4i): White solid, yield 80.0%. m.p. 102.5~103.8 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.38 (s, 1H, H-11), 6.93 (s, 1H, H-14), 4.47~4.32 (m, 2H, H-21), 3.51 (t, J=6.6 Hz, 2H, H-22), 3.28~3.25 (m, 1H, H-15), 2.87~2.82 (m, 2H, H-7), 2.27~2.20 (m, 2H, He-1, H-5), 1.83~1.67 (m, 5H, H-2, H-3, He-6), 1.51~1.46 (m, 2H, Ha-1, Ha-6), 1.30 (s, 3H, H-19), 1.20~1.23 (m, 9H, H-20, H-16, H-17); 13C NMR (150 MHz, CDCl3) δ: 179.4, 150.2, 145.5, 135.9, 129.9, 128.6, 123.0, 65.5, 49.1, 45.7, 39.2, 38.4, 38.0, 33.8, 31.0, 30.5, 25.6, 24.4, 24.2, 23.0, 19.9, 17.9; IR (KBr) ν: 2931, 2866, 1718 (C=O), 1462, 1386, 1386, 1238, 1182, 1105, 1033, 975, 883, 804 cm-1. Anal. calcd for C22H30- Br2O2: C 54.34, H 6.22; found C 54.35, H 6.26.

    12-Bromodehydroabietic acid-3'-bromopropyl ester (4j): White solid, yield 77.0%. m.p. 137.7~139.7 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.39 (s, 1H, H-11), 6.94 (s, 1H, H-14), 4.27~4.20 (m, 2H, H-21), 3.46 (t, J=6.6 Hz, 2H, H-23), 3.29~3.26 (m, 1H, H-15), 2.89~2.84 (m, 2H, H-7), 2.26 (d, J=12.6 Hz, 1H, He-1), 2.17~2.20 (m, 3H, H-5, H-22), 1.88~1.67 (m, 5H, H-2, H-3, He-6), 1.51~1.53 (m, 1H, Ha-1), 1.43~1.46 (m, 1H, Ha-6), 1.29 (s, 3H, H-19), 1.22~1.25 (m, 9H, H-20, H-16, H-17); 13C NMR (150 MHz, CDCl3) δ: 178.2, 148.8, 144.1, 134.3, 128.54, 127.2, 121.5, 62.3, 47.6, 44.6, 37.8, 37.1, 36.6, 32.3, 31.6, 29.6, 29.5, 25.1, 22.8, 21.6, 18.5, 16.5; IR (KBr) ν: 2927, 1712 (C=O), 1463, 1240, 1107, 1039, 979 cm-1. Anal. calcd for C23H32Br2O2: C 55.22, H 6.45; found C 55.24, H 6.41.

    12-Bromodehydroabietic acid-4'-bromobutyl ester (4k): Pale yellow solid, yield 66.8%. m.p. 95.5~97.9 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.39 (s, 1H, H-11), 6.94 (s, 1H, H-14), 4.16~4.09 (m, 2H, H-21), 3.44 (t, J=6.6 Hz, 2H, H-24), 3.31~3.26 (m, 1H, H-15), 2.86~2.83 (m, 2H, H-7), 2.26 (d, J=12.6 Hz, 1H, He-1), 2.19 (d, J=12.6 Hz, 1H, H-5), 1.95 (q, J=6.6 Hz, 2H, H-22), 1.81~1.67 (m, 7H, H-2, H-3, He-6 and H-23), 1.53~1.49 (m, 1H, Ha-1), 1.46~1.42 (m, 1H, Ha-6), 1.29 (s, 3H, H-19), 1.25~1.22 (m, 9H, H-20, H-16, H-17); 13C NMR (150 MHz, CDCl3) δ: 178.3, 148.9, 144.1, 134.4, 128.5, 127.2, 121.5, 63.6, 47.6, 44.6, 37.9, 37.0, 36.6, 33.0, 32.3, 29.6, 29.3, 27.4, 25.1, 23.0, 22.8, 21.5, 18.5, 16.5; IR (KBr) ν: 2956, 1708 (C=O), 1467, 1388, 1244, 1109, 883 cm-1. Anal. calcd for C24H34Br2O2: C 56.04, H 6.66; found C 56.10, H 6.68.

    12-Bromodehydroabietic acid-5'-bromoamyl ester (4l): Pale yellow oil, yield 75.3%. 1H NMR (600 MHz, CDCl3) δ: 7.39 (s, 1H, H-11), 6.94 (s, 1H, H-14), 4.13~4.07 (m, 2H, H-21), 3.42 (t, J=6.6 Hz, 2H, H-25), 3.28~3.26 (m, 1H, H-15), 2.86~2.83 (m, 2H, H-7), 2.26 (d, J=12.6 Hz, 1H, He-1), 2.20 (d, J=12.6 Hz, 1H, H-5), 1.92~1.51 (m, 11H, H-2, H-3, He-6, H-22, H-23, H-24), 1.36~1.45 (m, 2H, Ha-1, Ha-6), 1.29 (s, 3H, H-19), 1.22~1.24 (m, 9H, H-20, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.4, 148.9, 144.0, 134.4, 128.5, 127.1, 121.5, 64.3, 47.6, 44.5, 37.9, 37.0, 36.6, 33.5, 32.3, 32.2, 29.6, 27.9, 25.1, 24.7, 23.0, 21.5, 18.5, 16.4; IR (KBr) ν: 2933, 1712 (C=O), 1465, 1388, 1246, 1107, 975 cm-1. Anal. calcd for C25H36Br2O2: C 56.83, H 6.87; found C 56.89, H 6.88.

    12, 14-Dinitrodehydroabietic acid-2'-bromoethyl ester (4m): Yellow solid, yield 57.1%. m.p. 158.9~160.6 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 4.49~4.35 (m, 2H, H-21), 3.57~3.54 (m, 2H, H-22), 3.08~3.02 (m, 1H, H-15), 2.90~2.72 (m, 2H, H-7), 2.29 (d, J=12.7 Hz, 1H, He-1), 2.24 (d, J=12.7 Hz, 1H, H-5), 1.86~1.69 (m, 5H, H-2, H-3, He-6), 1.62~1.54 (m, 2H, Ha-1, Ha-6), 1.35~1.32 (m, 9H, H-16, H-17, H-19), 1.27 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.3, 152.1, 150.8, 149.5, 130.7, 128.5, 121.5, 64.3, 47.4, 43.4, 37.7, 37.6, 36.3, 29.1, 29.0, 25.0, 24.6, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2943, 1722 (C=O), 1533 (NO2), 1463, 1361, 1290, 1249, 1178, 1116, 790, 734 cm-1. Anal. calcd for C22H29BrN2O6: C 53.13, H 5.88, N 5.63; found C 53.10, H 5.86, N 5.67.

    12, 14-Dinitrodehydroabietic acid-3'-bromopropyl ester (4n): Yellow solid, yield 57.7%. m.p. 131.4~132.6 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 4.25~4.23 (t, J=6.0 Hz, 2H, H-21), 3.44~3.47 (t, J=6.0 Hz, 2H, H-23), 3.04~3.02 (m, 1H, H-15), 2.78~2.76 (m, 2H, H-7), 2.28 (d, J=12.6 Hz, 1H, He-1), 2.17~2.21 (m, 3H, H-5, H-22), 1.86~1.73 (m, 5H, H-2, H-3, He-6), 1.57~1.53 (m, 2H, Ha-1, Ha-6), 1.32 (d, J=7.2 Hz, 6H, H-16, H-17), 1.30 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.5, 150.8, 152.2, 149.5, 130.6, 128.5, 121.4, 62.6, 47.2, 43.6, 37.7, 37.6, 36.4, 31.5, 29.2, 29.0, 25.0, 24.6, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2937, 1718 (C=O), 1533(NO2), 1363, 1242, 1178, 1132, 983, 902, 779, 732 cm-1. Anal. calcd for C23H31BrN2O6: C 54.02, H 6.11, N 5.48; found C 53.96, H 6.15, N 5.47.

    12, 14-Dinitrodehydroabietic acid-4'-bromobutyl ester (4o): Yellow solid, yield 63.0%. m.p. 104.3~108.7 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.47 (s, 1H, H-11), 4.05 (t, J=6.3 Hz, 2H, H-21), 3.36 (t, J=6.5 Hz, 2H, H-24), 2.99~2.92 (m, 1H, H-15), 2.75~2.64 (m, 2H, H-7), 2.19 (d, J=12.6 Hz, 1H, He-1), 2.10 (dd, J=12.6, 2.0 Hz, 1H, H-5), 1.88~1.81 (m, 2H, H-22), 1.78~1.63 (m, 7H, H-2, H-3, He-6 and H-23), 1.48~1.41 (m, 2H, Ha-1 and Ha-6), 1.25 (d, J=7.2 Hz, 6H, H-17, H-16), 1.20 (s, 3H, H-19), 1.17 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.7, 152.1, 150.9, 149.5, 130.6, 128.5, 121.5, 64.0, 47.2, 43.5, 37.7, 37.6, 36.4, 32.9, 29.3, 29.0, 27.3, 25.0, 24.6, 20.7, 20.6, 20.2, 18.2, 16.5; IR (KBr) ν: 2935, 2875, 1716 (C=O), 1533 (NO2), 1462, 1365, 1244, 1180, 1120, 1024, 905, 823, 734 cm-1. Anal. calcd for C24H33BrN2O6: C 54.86, H 6.33, N 5.33; found C 54.91, H 6.36, N 5.37.

    12, 14-Dinitrodehydroabietic acid-5′-bromoamyl ester (4p): Yellow solid, yield 65.7%. m.p. 111.0~111.7 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H), 4.11 (t, J=6.4 Hz, 2H, H-21), 3.43 (t, J=6.6 Hz, 2H, H-25), 3.04 (dt, J=14.3, 7.1 Hz, 1H, H-15), 2.77 (dd, J=9.7, 5.4 Hz, 2H, H-7), 2.28 (d, J=13.0 Hz, 1H, He-1), 2.20 (dd, J=12.6, 2.1 Hz, 1H, H-5), 1.95~1.49 (m, 13H, Ha-1, H-2, H-3, H-6, H-22, H-23, H-24), 1.34 (dd, J=7.1, 1.7 Hz, 6H, H-17, H-16), 1.29 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.7, 152.1, 150.9, 149.5, 130.6, 128.5, 121.5, 64.6, 47.2, 43.5, 37.7, 37.6, 36.4, 33.4, 32.2, 29.0, 27.8, 25.0, 24.7, 24.6, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2935, 1718 (C=O), 1533 (NO2), 1460, 1365, 1247, 1180, 1130, 1047, 902, 736, 646, 561 cm-1. Anal. calcd for C25H35BrN2O6: C 55.66, H 6.54, N 5.19; found C 55.70, H 6.56, N 5.15.

    12, 14-Dinitrodehydroabietic acid-6'-bromohexyl ester (4q): Yellow solid, yield 61.1%. m.p. 55.5~56.2 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 4.13~4.05 (m, 2H, H-21), 3.42 (t, J=6.7 Hz, 2H, H-26), 3.04 (dt, J=14.3, 7.1 Hz, 1H, H-15), 2.76 (dd, J=8.9, 4.6 Hz, 2H, H-7), 2.28 (d, J=13.0 Hz, 1H, He-1), 2.19 (dd, J=12.6, 1.9 Hz, 1H, H-5), 1.79~1.37 (m, 15H, Ha-1, H-2, H-3, H-6, H-22, H-23, H-24, H-25), 1.34 (dd, J=7.1, 1.6 Hz, 6H, H-17, H-16), 1.29 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3CDCl3) δ: 177.7, 152.1, 150.9, 149.5, 130.6, 128.5, 121.5, 64.8, 47.2, 43.5, 37.7, 37.6, 36.4, 33.7, 32.5, 29.0, 28.5, 27.7, 25.2, 25.0, 24.7, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2935, 1720 (C=O), 1533 (NO2), 1462, 1365, 1246, 1180, 1130, 1047, 954, 902, 823, 731, 648, 563 cm-1. Anal. calcd for C26H37Br- N2O6: C 56.42, H 6.74, N 5.06; found C 56.46, H 6.76, N 5.10.

    12, 14-Dinitrodehydroabietic acid-4'-bromobutenyl ester (4r). Yellow solid, yield 55.1%. m.p. 113.4~114.1 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 5.98 (dt, J=15.0, 7.4 Hz, 1H, H-22), 5.85 (t, J=13.5 Hz, 1H, H-23), 4.64~4.57 (m, 2H, H-21), 3.96 (d, J=7.4 Hz, 2H, H-24), 3.04 (dt, J=14.3, 7.1 Hz, 1H, H-15), 2.77 (dd, J=10.0, 6.9 Hz, 2H, H-7), 2.28 (d, J=12.8 Hz, 1H, He-1), 2.20 (dd, J=12.6, 2.0 Hz, 1H, H-5), 1.78 (dd, J=27.9, 14.1 Hz, 5H, H-2, H-3, He-6), 1.57~1.51 (m, 2H, Ha-1, Ha-6), 1.34 (dd, J=7.1, 1.6 Hz, 6H, H-17 and H-16), 1.31 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.3, 152.1, 150.9, 149.5, 130.6, 130.4, 128.8, 128.6, 121.5, 63.9, 47.2, 43.5, 37.7, 37.6, 36.3, 31.2, 29.0, 25.0, 24.6, 20.7, 20.6, 20.1, 18.2, 16.4; IR (KBr) ν: 2929, 1724 (C=O), 1533 (NO2), 1365, 1240, 1178, 1120, 960, 902, 732, 561 cm-1. Anal. calcd for C24H31BrN2O6: C 55.07, H 5.97, N 5.35; found C 55.11, H 6.02, N 5.94.

    3.2.4   Synthetic route for target compounds 5a~5r

    Under anhydrous conditions, a mixture of the intermediates 4 (2.84 mmol) in CH3CN (50 mL), coupled with AgNO3 (1.0 g) in the presence of CH3CN (50 mL) was heated with reflux for 5 h under dark condition. After completion of the reaction, the mixture was filtered and washed with CH3CN, concentrated with a rotary evaporator and purified by silica gel chromatography with a mixture of petroleum ether and ethyl acetate (V:V=20:1) as eluent to give the target compounds 5a~5r.

    Dehydroabietic acid-2'-nitrooxyethyl ester (5a): White solid, yield 88.4%. 52.4~54.4 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.17 (d, J=8.4 Hz, 1H, H-11), 7.01 (d, J=8.4 Hz, 1H, H-12), 6.90 (s, 1H, H-14), 4.66~4.65 (t, J=4.2 Hz, 2H, H-22), 4.67~4.30 (m, 2H, H-21), 2.90~2.88 (m, 2H, H-7), 2.86~2.81 (m, 1H, H-15), 2.32 (d, J=12.6 Hz, 1H, He-1), 2.27~2.25 (d, J=12.6 Hz, 1H, H-5), 1.86~1.66 (m, 5H, H-2, H-3 and He-6), 1.53~1.39 (m, 2H, Ha-1 and Ha-6), 1.29 (s, 3H, H-19), 1.24 (s, 3H, H-20), 1.22 (d, J=3.6 Hz, 6H, H-16, H-17); 13C NMR (150 MHz, CDCl3) δ: 178.4, 146.8, 145.9, 134.7, 127.1, 124.3, 124.1, 70.7, 60.4, 47.9, 44.9, 38.0, 37.1, 36.6, 33.6, 30.1, 25.3, 24.1, 21.9, 18.6, 16.6; IR (KBr) ν: 2927, 1712 (C=O), 1643 (ONO2), 1497, 1436, 1387, 1277 (ONO2), 1246, 1174, 1125, 1052, 896, 843 cm-1; ESI-MS m/z: 412.10 [M+ Na]+. Anal. calcd for C22H31NO5: C 67.84, H 8.02, N 3.60; found C 67.78, H 8.06, N 3.61.

    Dehydroabietic acid-3'-nitrooxypropyl ester (5b): Color- less liquid, yield 85.2%. 1H NMR (600 MHz, CDCl3) δ: 7.20 (d, J=8.4 Hz, 1H, H-11), 7.04 (d, J=8.4 Hz, 1H, H-12), 6.93 (s, 1H, H-14), 4.55 (t, J=6.6 Hz, 2H, H-23), 4.24~4.17 (m, 2H, H-21), 2.92~2.89 (m, 2H, H-7), 2.88~2.84 (m, 1H, H-15), 2.35 (d, J=12.6 Hz, 1H, He-1), 2.26 (d, J=12.6 Hz, 1H, H-5), 2.10 (q, J=6.0 Hz, 2H, H-22), 1.90~1.68 (m, 5H, H-2, H-3, He-6), 1.44~1.36 (m, 2H, Ha-1, Ha-6), 1.31 (s, 3H, H-19), 1.27 (s, 3H, H-20), 1.25 (d, J=3.6 Hz, 6H, H-16, H-17); 13C NMR (150 MHz, CDCl3) δ: 178.4, 146.9, 145.9, 134.6, 127.1, 124.3, 124.1, 70.0, 60.6, 47.8, 44.9, 38.0, 37.1, 36.8, 33.6, 30.2, 25.3, 24.1, 21.9, 18.7 16.6; IR (KBr) ν: 2981, 1724 (C=O), 1637 (ONO2), 1461, 1384, 1278 (ONO2), 1102, 1076, 854, 756 cm-1; ESI-MS m/z: 426.30 [M+Na]+. Anal. calcd for C23H33NO5: C 68.46, H 8.24, N 3.47; found C 68.44, H 8.21, N 3.49.

    Dehydroabietic acid-4'-nitrooxybutyl ester (5c): Color- less liquid, yield 85.0%. 1H NMR (600 MHz, CDCl3) δ: 7.17 (d, J=8.4 Hz, 1H, H-11), 7.01 (d, J=8.4 Hz, 1H, H-12), 6.90 (s, 1H, H-14), 4.51~4.48 (m, 2H, H-24), 4.13~4.09 (m, 2H, H-21), 2.89~2.87 (m, 2H, H-7), 2.86~2.81 (m, 1H, H-15), 2.30 (d, J=12.0 Hz, 1H, He-1), 2.23 (d, J=12.0 Hz, 1H, H-5), 1.89~1.87 (m, 2H, H-22), 1.82~1.63 (m, 7H, H-2, H-3, He-6 and H-23), 1.52~1.48 (m, 1H, Ha-1), 1.42~1.39 (m, 1H, Ha-6), 1.28 (s, 3H, H-19), 1.24 (s, 3H, H-16), 1.23 (s, 3H, H-17), 1.22 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 178.6, 146.9, 145.9, 134.7, 127.0, 124.3, 124.1, 72.2, 63.7, 47.8, 44.9, 38.0, 37.1, 36.8, 33.6, 30.0, 25.3, 25.2, 23.5, 21.9, 18.7 16.6; IR (KBr) ν: cm-1: 2983, 1720 (C=O), 1641 (ONO2), 1446, 1384, 1278 (ONO2), 1178, 1128, 1029, 984, 827 cm-1; ESI-MS m/z: 417.10 [M]+. Anal. calcd for C24H35- NO5: C 69.04, H 8.45, N 3.35; found C 69.09, H 8.44, N 3.32.

    Dehydroabietic acid-5'-nitoxypentyl ester (5d): Color- less liquid, yield 78.6%. 1H NMR (600 MHz, CDCl3) δ: 7.19 (d, J=8.4 Hz, 1H, H-11), 7.03 (d, J=8.4 Hz, 1H, H-12), 6.92 (s, 1H, H-14), 4.50~4.46 (m, 2H, H-25), 4.05~4.13 (m, 2H, H-21), 2.91~2.83 (m, 3H, H-7 and H-15), 2.32 (d, J=12.6 Hz, 1H, He-1), 2.26 (d, J=12.6 Hz, 1H, H-5), 1.84~1.48 (m, 11H, H-2, H-3, He-6, H-22, H-23 and H-24), 1.44~1.34 (m, 2H, Ha-1 and Ha-6), 1.29 (s, 3H, H-19), 1.24~1.26 (m, 9H, H-16, H-17 and H-20); 13C NMR (150 MHz, CDCl3) δ:178.6, 146.9, 145.8, 134.61, 126.9, 124.2, 124.0, 72.7, 64.0, 47.7, 44.8, 38.0, 37.0, 36.7, 33.5, 30.1, 25.2, 25.0, 24.0, 21.3, 22.2, 21.7, 18.6 16.5; IR (KBr) ν: 2937, 1722 (C=O), 1629 (ONO2), 1471, 1388, 1278 (ONO2), 1244, 1176, 1009, 975, 882; ESI-MS m/z: 470.88 [M+K]+ cm-1. Anal. calcd for C25H37NO5: C 69.58, H 8.64, N 3.25; found C 69.55, H 8.61, N 3.27.

    Dehydroabietic acid-6'-nitrohexyl ester (5e): Colorless liquid, yield 84.8%. 1H NMR (600 MHz, CDCl3) δ: 7.14 (d, J=8.4 Hz, 1H, H-11), 7.01 (d, J=8.4 Hz, 1H, H-12), 6.90 (s, 1H, H-14), 4.50~4.47 (m, 2H, H-26), 4.13~4.07 (m, 2H, H-21), 2.89~2.86 (m, 2H, H-7), 2.86~2.82 (m, 1H, H-15), 2.31 (d, J=12.6 Hz, 1H, He-1), 2.23 (d, J=12.6 Hz, 1H, H-5), 1.89~1.87 (m, 4H, H-22 and H-25), 1.82~1.64 (m, 9H, H-2, H-3, He-6, H-23 and H-24), 1.38~1.52 (m, 2H, Ha-1 and Ha-6), 1.28 (s, 3H, H-19), 1.24 (s, 3H, H-20), 1.22 (d, J=4.8 Hz, 6H, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.6, 147.0, 145.8, 134.7, 127.0, 124.3, 124.0, 73.1, 64.4, 47.7, 44.9, 38.0, 37.0, 36.7, 33.5, 30.2, 25.7, 25.4, 25.3, 25.2, 24.0, 24.0, 21.8, 18.7 16.5; IR (KBr) ν: 2943, 1721 (C=O), 1625 (ONO2), 1460, 1383, 1280 (ONO2), 1176, 1128, 1009, 977, 806, 759 cm-1; ESI-MS m/z: 445.88 [M]+. Anal. calcd for C26H39NO5: C 70.08, H 8.82, N, 3.14; found C 70.10, H 8.85, N 3.11.

    Dehydroabietic acid-8'-nitoxyoctyl ester (5f): Colorless liquid, yield 80.7%. 1H NMR (600 MHz, CDCl3) δ: 7.17 (d, J=8.4 Hz, 1H, H-11), 7.00 (d, J=8.4 Hz, 1H, H-12), 6.89 (s, 1H, H-14), 4.46~4.41 (m, 2H, H-28), 4.10~4.00 (m, 2H, H-21), 2.88~2.85 (m, 2H, H-7), 2.84~2.80 (m, 1H, H-15), 2.25 (d, J=12.6 Hz, 1H, He-1), 2.25 (d, J=12.6 Hz, 1H, H-5), 1.82~1.32 (m, 17H, Ha-1, H-2, H-3, H-6, H-22, H-23, H-24, H-25, H-26 and H-27), 1.26 (s, 3H, H-19), 1.23 (s, 3H, H-20), 1.21 (d, J=4.8 Hz, 6H, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.7, 147.0, 145.8, 134.8, 127.0, 124.3, 124.0, 73.4, 64.7, 47.7, 44.9, 38.1, 37.0, 36.7, 34.1, 34.0, 32.8, 30.2, 29.1, 29.0, 28.7, 26.8, 25.9, 25.6, 25.3, 24.1, 24.0, 21.8, 18.7 16.6; IR (KBr) ν: 2933, 2852, 1720 (C=O), 1626 (ONO2), 1463, 1382, 1280 (ONO2), 1246, 1176, 1126, 974, 864, 758, 698 cm-1; ESI-MS m/z: 474.20 [M+H]+. Anal. calcd for C28H43NO5: C 71.00, H 9.15, N 2.96; found C 71.03, H 9.11, N 2.98.

    Dehydroabietic acid-12'-nitrooxydodecyl ester (5g): Colorless liquid, yield 83.5%. 1H NMR (600 MHz, CDCl3) δ: 7.21 (d, J=8.2 Hz, 1H, H-11), 7.04 (d, J=8.2 Hz, 1H, H-12), 6.92 (s, 1H, H-14), 4.47 (t, J=6.6 Hz, 2H, H-32), 4.15~4.02 (m, 2H, H-21), 2.91~2.82 (m, 3H, H-7 and H-15), 2.35~2.28 (m, 2H, He-1 and H-5), 1.83~1.61 (m, 10H, H-2, H-3, He-6, H-22, H-31 and Ha-1), 1.46~1.30 (m, 20H, Ha-6, H-19, H-23, H-24, H-25, H-26, H-27, H-28, H-29 and H-30), 1.27 (s, 3H, H-20), 1.25 (d, J=2.4 Hz, 6H, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.7, 147.0, 145.71, 134.7, 126.9, 124.3, 124.0, 73.5, 64.7, 47.7, 44.8, 38.0, 37.0, 36.6, 33.5, 30.2, 29.5, 29.4, 29.2, 29.1, 28.7, 26.8, 26.0, 25.7, 25.3, 24.0, 21.8, 18.7, 16.6; IR (KBr) ν: 2927, 2856, 1722 (C=O), 1631 (ONO2), 1462, 1381, 1278 (ONO2), 1244, 1176, 1126, 1035, 947, 862 cm-1; ESI-MS m/z: 530.01 [M+H]+. Anal. calcd for C32H51NO5: C 72.55, H 9.70, N 2.64; found C 72.53, H 9.72, N 2.61.

    Dehydroabietic acid-4'-nitrooxybutene ester (5h): Color- less liquid, yield 88.2%. 1H NMR (600 MHz, CDCl3) δ: 7.24 (d, J=8.4 Hz, 1H, H-11), 7.01 (d, J=8.4 Hz, 1H, H-12), 6.97 (s, 1H, H-14), 6.07~6.04 (m, 1H, H-23), 5.91~5.86 (m, 1H, H-22), 4.95 (d, J=6.6 Hz, 2H, H-24), 4.71~4.65 (m, 2H, H-21), 2.96~2.94 (m, 2H, H-7), 2.91~2.88 (m, 1H, H-15), 2.38 (d, J=12.0 Hz, 1H, He-1), 2.33 (d, J=12.0 Hz, 1H, H-5), 1.92~1.73 (m, 5H, H-2, H-3 and He-6), 1.59~1.47 (m, 2H, Ha-1 and Ha-6), 1.36 (s, 3H, H-19), 1.30 (s, 3H, H-20), 1.29 (d, J=3.0 Hz, 6H, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.1, 147.0, 145.9, 134.8, 133, 0, 127.1, 124.4, 124.2, 123.8, 72.5, 63.6, 47.9, 45.1, 38.2, 37.2, 36.8, 33.7, 30.2, 25.4, 24.2, 21.9, 18.8, 16.7; IR (KBr) ν: 2956, 2870, 1693 (C=O), 1639 (ONO2), 1458, 1382, 1274 (ONO2), 1188, 970, 852 cm-1; ESI-MS m/z: 416.10 [M+H]+. Anal. calcd for C24H33NO5: C 69.37, H 8.00, N 3.37; found C 69.32, H 8.02, N 3.33.

    12-Bromodehydroabietic acid-2'-nitrooxyethyl ester (5i): White solid, yield 64.4%. m.p. 134.1~136.7 ℃; IR (KBr) ν: 2927, 1710 (C=O), 1637 (ONO2), 1496, 1382, 1244, 1128, 896; 1H NMR (600 MHz, CDCl3) δ: 7.37 (s, 1H, H-11), 6.93 (s, 1H, H-14), 4.53 (t, J=6 Hz, 2H, H-22), 4.19 (t, J=6 Hz, 2H, H-21), 3.29~3.25 (m, 1H, H-15), 2.85~2.80 (m, 2H, H-7), 2.26 (d, J=12.0 Hz, 1H, He-1), 2.17 (d, J=12.0 Hz, 1H, H-5), 2.10~1.81 (m, 5H, H-2, H-3 and He-6), 1.47~1.51 (m, 1H, Ha-1), 1.40~1.43 (m, 1H, Ha-6), 1.28 (s, 3H, H-19), 1.23 (s, 3H, H-20), 1.21 (d, J=6 Hz, 6H, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 179.6, 150.2, 145.5, 135.7, 129.9, 128.6, 123.0, 71.3, 62.0, 49.0, 46.0, 39.2, 38.4, 38.0, 33.8, 30.9, 26.5, 24.4, 24.2, 23.0, 19.8 cm-1; ESI-MS m/z: 468.82 [M]+. Anal. calcd for C22H30BrNO5: C 56.41, H 6.46, N 2.99; found C 56.44, H 6.42, N 3.03.

    12-Bromodehydroabietic acid-3'-nitrooxypropyl ester (5j): Pale yellow solid, yield 68.5%. m.p. 76.4~78.3 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.39 (s, 1H, H-11), 6.94 (s, 1H, H-14), 4.54 (t, J=6.6 Hz, 2H, H-23), 4.21~4.19 (m, 2H, H-21), 3.31~3.26 (m, 1H, H-15), 2.86~2.82 (m, 2H, H-7), 2.27 (d, J=12.6 Hz, 1H, He-1), 2.17 (d, J=12.6 Hz, 1H, H-5), 2.10~2.07 (m, 2H, H-22), 1.87~1.64 (m, 5H, H-2, H-3 and He-6), 1.53~1.49 (m, 1H, Ha-1), 1.44~1.41 (m, 1H, Ha-6), 1.29 (s, 3H, H-19), 1.25~1.22 (m, 9H, H-20, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.2, 148.8, 144.1, 134.3, 128.5, 127.2, 121.6, 69.9, 60.6, 47.6, 44.6, 37.8, 37.0, 36.6, 32.3, 29.5, 26.5, 25.1, 23.0, 22.8, 21.6, 18.4, 16.5; IR (KBr) ν: 2956, 1722 (C=O), 1641 (ONO2), 1498, 1454, 1384, 1280 (ONO2), 1174, 983 cm-1; ESI-MS m/z: 504.70 [M+Na]+. Anal. calcd for C23H32BrNO5: C 57.26, H 6.69, N 2.90; found C 57.22, H 6.70, N 2.92.

    12-Bromodehydroabietic acid-4'-nitrooxybutyl ester (5k): White solid, yield 63.6%. m.p. 101.5~102.8 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.39 (s, 1H, H-11), 6.94 (s, 1H, H-14), 4.50 (t, J=6.6 Hz, 2H, H-24), 4.15~4.11 (m, 2H, H-21), 3.31~3.26 (m, 1H, H-15), 2.86~2.79 (m, 2H, H-7), 2.26 (d, J=12.6 Hz, 1H, He-1), 2.18 (d, J=12.6 Hz, 1H, H-5), 1.88~1.67 (m, 9H, H-2, H-3, He-6, H-22 and H-23), 1.53~1.49 (m, 1H, Ha-1), 1.45~1.42 (m, 1H, Ha-6), 1.29 (s, 3H, H-19), 1.25~1.22 (m, 9H, H-20, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.3, 148.9, 144.1, 134.3, 128.5, 127.2, 121.6, 72.6, 63.7, 47.6, 44.6, 37.8, 37.0, 36.7, 32.3, 29.6, 29.3, 27.4, 25.1, 25.1, 23.7, 23.0, 22.8, 21.6, 18.5, 16.5 cm-1; IR (KBr) ν: 2953, 1708 (C=O), 1471, 1631 (ONO2), 1386, 1247 (ONO2), 1024, 864; ESI-MS m/z: 518.85 [M+Na]+. Anal. calcd for C24H34BrNO5: C 58.07, H 6.90, N 2.82; found C 58.11, H 6.87, N 2.84.

    12-Bromodehydroabietic acid-5'-nitoxypentyl ester (5l): White solid, yield 58.2%. m.p. 57.1~59.2 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.39 (s, 1H, H-11), 6.95 (s, 1H, H-14), 4.47 (t, J=6.6 Hz, 2H, H-25), 4.05~4.12 (m, 2H, H-21), 3.31~3.26 (m, 1H, H-15), 2.87~2.82 (m, 2H, H-7), 2.26 (d, J=12.6 Hz, 1H, He-1), 2.19 (d, J=12.6 Hz, 1H, H-5), 1.83~1.68 (m, 9H, H-2, H-3, He-6, H-22 and H-24), 1.51~1.42 (m, 4H, Ha-1, Ha-6 and H-23), 1.29 (s, 3H, H-19), 1.22~1.25 (m, 9H, H-20, H-16 and H-17); 13C NMR (150 MHz, CDCl3) δ: 178.4, 148.9, 144.1, 134.4, 128.6, 127.2, 121.6, 72.9, 64.1, 47.6, 44.5, 37.9, 37.0, 36.6, 32.3, 29.6, 28.2, 25.1, 22.9, 22.8, 22.4, 21.6, 18.5, 16.5; IR (KBr) ν: 2935, 1722 (C=O), 1629 (ONO2), 1471, 1388, 1278 (ONO2), 1130, 1039, 975 cm-1; ESI-MS m/z: 510.83 [M]+. Anal. calcd for C25H36BrNO5: C 58.82, H 7.11, N 2.74; found C 58.81, H 7.13, N 2.74.

    12, 14-Dinitrodehydroabietic acid-2'-nitrooxyethyl ester (5m): Yellow solid, yield 73.2%. m.p. 110.5~111.5 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.47 (s, 1H, H-11), 4.24~4.08 (m, 2H, H-22), 3.75(t, J=4.8, 2H, H-21), 2.99~2.92(m, 1H, H-15), 2.71~2.67 (m, 2H, H-7), 2.20 (d, J=12.0 Hz, 1H, He-1), 2.13 (dd, J=12.0, 2.0 Hz, 1H, H-5), 1.80~1.66 (m, 5H, H-2, H-3 and He-6), 1.52~1.41 (m, 2H, Ha-1 and Ha-6), 1.26 (s, 3H, H-16), 1.24 (s, 3H, H-17), 1.22 (s, 3H, H-19), 1.18 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 178.3, 152.1, 150.9, 149.5, 130.7, 128.5, 121.5, 66.4, 61.4, 47.3, 43.6, 37.7, 37.6, 36.3, 29.0, 25.0, 24.7, 20.7, 20.6, 20.2, 18.2, 16.5; IR (KBr) ν: 2937, 1726 (C=O), 1641 (ONO2), 1533 (NO2), 1465, 1365, 1288 (ONO2), 1242, 1180, 1136, 896, 848, 734, 665 cm-1; ESI-MS m/z: 477.80 [M-H]-. Anal. calcd for C22H29- N3O9: C 55.11, H 6.10, N 8.76; found C 55.08, H 6.13, N 8.73.

    12, 14-Dinitrodehydroabietic acid-3'-nitrooxypropyl ester (5n): Yellow solid, yield 76.0%. m.p. 123.6~125.2 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 4.55 (t, J=6.0 Hz, 2H, H-23), 4.25~4.23 (m, 2H, H-21), 3.07~3.02 (m, 1H, H-15), 2.78~2.76 (m, 2H, H-7), 2.28 (d, J=12.6 Hz, 1H, He-1), 2.19~2.17 (d, J=12.6 Hz, 1H, H-5), 2.08~2.12 (m, 2H, H-22), 1.85~1.74 (m, 5H, H-2, H-3 and He-6), 1.51~1.56 (m, 2H, Ha-1 and Ha-6), 1.34 (d, J=7.2 Hz, 6H, H-16 and H-17), 1.30 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.5, 152.1, 150.8, 149.5, 130.5, 128.6, 121.4, 69.8, 61.0, 47.2, 43.5, 37.7, 37.5, 36.4, 29.0, 26.5, 25.0, 24.6, 20.7, 20.6, 20.2, 18.1, 16.4; IR (KBr) ν: 2935, 1724 (C=O), 1627 (ONO2), 1533 (NO2), 1463, 1365, 1278 (ONO2), 1244, 1180, 1122, 1045, 983, 864 cm-1; ESI-MS m/z: 491.82 [M-H]-. Anal. calcd for C23H31N3O9: C 55.98, H 6.33, N 8.51; found C 55.99, H 6.31, N 8.55.

    12, 14-Dinitrodehydroabietic acid-4′-nitrooxybutyl ester (5o): Yellow solid, yield 74.2%. m.p. 105.8~108.3 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 4.50 (t, J=6.2 Hz, 2H, H-24), 4.17~4.10 (m, 2H, H-21), 3.04 (dt, J=14.3, 7.1 Hz, 1H, H-15), 2.77 (dd, J=9.0, 4.7 Hz, 2H, H-7), 2.28 (d, J=12.8 Hz, 1H, He-1), 2.18 (dd, J=12.6, 2.1 Hz, 1H, H-5), 1.87~1.71 (m, 9H, H-2, H-3, He-6, H-22 and H-23), 1.53 (t, J=14.9 Hz, 2H, Ha-1 and Ha-6), 1.34 (dd, J=7.1, 1.8 Hz, 6H, H-16 and H-17), 1.29 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.6, 152.1, 150.9, 149.5, 130.5, 128.6, 121.4, 72.5, 64.0, 47.2, 43.5, 37.7, 37.6, 36.4, 29.0, 25.1, 24.9, 24.6, 23.7, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2929, 2875, 1716 (C=O), 1618 (ONO2), 1529 (NO2), 1463, 1365, 1280 (ONO2), 1244, 1180, 981, 948, 875 cm-1; ESI-MS m/z: 506.87 [M-H]-. Anal. calcd for C24H33N3O9: C 56.80, H 6.55, N 8.28; found C 56.83, H 6.56, N 8.29.

    12, 14-Dinitrodehydroabietic acid-5'-nitoxypentyl ester (5p): Yellow solid, yield 69.9%. m.p. 44.8~45.2 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H), 4.49 (d, J=6.6 Hz, 2H, H-25), 4.11 (t, J=5.7 Hz, 2H, H-21), 3.04 (dt, J=14.3, 7.1 Hz, 1H, H-15), 2.76 (dd, J=9.2, 4.9 Hz, 2H, H-7), 2.28 (d, J=12.8 Hz, 1H, He-1), 2.19 (dd, J=12.6, 2.0 Hz, 1H, H-5), 1.90~1.45 (m, 13H, Ha-1, H-2, H-3, H-6, H-22, H-23 and H-24), 1.34 (dd, J=7.1, 2.0 Hz, 6H, H-16 and H-17), 1.29 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.7, 152.1, 150.9, 149.5, 130.6, 128.5, 121.5, 72.9, 64.4, 47.2 43.6, 37.7, 37.6, 36.4, 29.0, 28.2, 26.4, 24.9, 24.7, 22.3, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2943, 1718 (C=O), 1635 (ONO2), 1533 (NO2), 1463, 1365, 1280 (ONO2), 1180, 1132, 1037, 979, 860, 758, 700, 659, 567 cm-1; ESI-MS m/z: 522.74 [M+H]+. Anal. calcd for C25H35N3O9: C 57.57, H 6.76, N 8.06; found C 57.54, H 6.74, N 8.03.

    12, 14-Dinitrodehydroabietic acid-6'-nitrohexyl ester (5q): Yellow solid, yield 59%. m.p. 56.5~57.0 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 4.48 (d, J=6.5 Hz, 2H, H-26), 4.09 (td, J=10.9, 4.3 Hz, 2H, H-21), 3.04 (dt, J=14.3, 7.1 Hz, 1H, H-15), 2.76 (dd, 2H, J=9.0, 4.7 Hz, H-7), 2.28 (d, J=12.8 Hz, 1H, He-1), 2.19 (dd, J=12.6, 2.0 Hz, 1H, H-5), 1.89~1.42 (m, 15H, Ha-1, H-2, H-3, H-6, H-22, H-23, H-24 and H-25), 1.36~1.32 (m, 6H, H-16 and H-17), 1.29 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.7, 152.1, 150.9, 149.5, 130.6, 128.5, 121.5, 73.0, 64.7, 47.2, 43.6, 37.7, 37.6, 36.4, 29.0, 28.4, 26.7, 26.6, 25.7, 25.4, 25.3, 25.0, 24.7, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2943, 1722 (C=O), 1625 (ONO2), 1535 (NO2), 1465, 1365, 1280 (ONO2), 1182, 1134, 1045, 979, 867, 759, 698, 655, 569 cm-1; ESI-MS m/z: 558.78 [M+Na]+. Anal. calcd for C26H37N3O9: C 58.31, H 6.96, N 7.85; found C 58.33, H 6.94, N 7.82.

    12, 14-Dinitrodehydroabietic acid-4'-nitrooxybutene ester (5r): Yellow solid, yield 81.6%. m.p. 114.9~115.2 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.56 (s, 1H, H-11), 6.08~5.95 (m, 1H, H-23), 5.90~5.80 (m, 1H, H-22), 4.94 (d, J=6.3 Hz, 2H, H-24), 4.64 (d, J=5.4 Hz, 2H, H-21), 3.04 (dt, J=14.3, 7.1 Hz, 1H, H-15), 2.77 (dd, J=8.9, 4.6 Hz, 2H, H-7), 2.29 (d, J=13.0 Hz, 1H, He-1), 2.20 (dd, J=12.6, 2.0 Hz, 1H, H-5), 1.86~1.73 (m, 5H, H-2, H-3 and He-6), 1.57~1.51 (m, 2H, Ha-1 and Ha-6), 1.34 (dd, J=7.1, 1.8 Hz, 6H, H-16 and H-17), 1.31 (s, 3H, H-19), 1.26 (s, 3H, H-20); 13C NMR (150 MHz, CDCl3) δ: 177.2, 152.1, 150.8, 149.5, 132.3, 130.6, 128.6, 128.20, 124.0, 121.5, 72.2, 63.7, 47.3, 43.6, 37.7, 37.6, 36.4, 29.0, 25.0, 24.6, 20.7, 20.6, 20.2, 18.2, 16.4; IR (KBr) ν: 2935, 1726 (C=O), 1631 (ONO2), 1533 (NO2), 1465, 1365, 1276 (ONO2), 1242, 1178, 1120, 923, 852, 732, 651, 567 cm-1; ESI-MS m/z: 528.10 [M+Na]+. Anal. calcd for C24H31N3O9: C 57.02, H 6.18, N 8.31; found C 57.03, H 6.14, N 8.34.

    The cytotoxicity assay of the compounds was determined by MTT. Cells were grown in dulbecco's modified eagle medium (DMEM) medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin and streptomycin, and grown at 37 ℃ in an atmosphere of 5% CO2 and 95% air. Cells were routinely trypsinized (0.05% trypsin/EDTA). All experiments were repeated at least three times. The target compounds were dissolved in dimethyl sulfoxide (DMSO) and added into DMEM. The final DMSO concentration never exceeded 0.1%, and cisplatin was used as the control drug in each experiment.

    Total NO release amounts in vitro were detected by nitrite/nitrate Assay Kit (Beyotime, China). Firstly, CNE-2 cells (3×100 μL, 5.0×104 cells/mL) were incubated in 96 well-plates for 24 h at 37 ℃, and then treated with target compounds (4 mmol/L) for 24 h. Secondly, the amounts of NO in vitro were measured according to the manufacturer's instructions. The optical density (OD) value of each well was measured on a microplate reader (BioTek, USA) at 540 nm and calculated according to the standard curve. Data were mean of three independent experiments.

    Supporting Information  The 1H NMR and 13C NMR spectra of compounds 4a~4rand 5a~5r. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.


    1. [1]

      李兆双, 李建芳, 刘鹤, 商士斌, 宋湛谦, 林产化学与工业, 2018, 38, 17.Li, Z.-S.; Li, J.-F.; Liu, H.; Shang, S.-B.; Song, Z.-Q. Chem. Ind. Forest. Prod. 2018, 38, 17(in Chinese).

    2. [2]

      Rao, X.; Song, Z.; He, L.; Jia, W. Chem. Pharm. Bull. 2008, 56, 1575. doi: 10.1248/cpb.56.1575

    3. [3]

      Huang, X. C.; Jin, L.; Wang, M.; Liang, D.; Chen, Z. F.; Zhang, Y.; Pan, Y. M.; Wang, H. S. Eur. J. Med. Chem. 2015, 89, 370. doi: 10.1016/j.ejmech.2014.10.060

    4. [4]

      Hou, W.; Luo, Z.; Zhang, G.; Cao, D.; Li, D.; Ruan, H.; Ruan, B. H.; Su, L.; Xu, H. Eur. J. Med. Chem. 2017, 138, 1042. doi: 10.1016/j.ejmech.2017.07.049

    5. [5]

      Gu, W.; Miao, T. T.; Hua, D. W.; Jin, X. Y.; Tao, X. B.; Huang, C. B.; Wang, S. F. Bioorg. Med. Chem. Lett. 2017, 27, 1296.

    6. [6]

      Huang, X.; Huang, R.; Liao. Z.; Pan, Y.; Gou, S.; Wang, H. Eur. J. Med. Chem. 2016, 108, 381. doi: 10.1016/j.ejmech.2015.12.008

    7. [7]

      Huang, X. C.; Wang, M.; Pan, Y. M.; Yao, G. Y.; Wang, H. S.; Tian, X. Y.; Qin, J. K.; Zhang, Y. Eur. J. Med. Chem. 2013, 69, 508. doi: 10.1016/j.ejmech.2013.08.055

    8. [8]

      Zhang, W. M.; Yao, Y.; Yang, T.; Wang, X. Y.; Zhu, Z. Y.; Xu, W. T.; Lin, H. X.; Gao, Z. B.; Zhou, H.; Yang, C. G.; Cui, Y. M. Bioorg. Med. Chem. Lett. 2018, 28, 1943. doi: 10.1016/j.bmcl.2018.03.062

    9. [9]

      da Silva, K. R.; Damasceno, J. L.; Inácio, M. O.; Abrão, F.; Ferreira, N. H.; Tavares, D. C.; Ambrosio, S. R. Front Microbiol. 2018, 65, 538. doi: 10.3389/fmicb.2019.00987

    10. [10]

      Zhou, Z.; Zhou, T. J. Chem. Res. 2018, 42, 405. doi: 10.3184/174751918X15337207982686

    11. [11]

      Pertino, M. W.; Vega, C.; Rolón, M.; Coronel, C.; Arias, A.R.; Hirschmann, G. S. Molecules 2017, 22, 369. doi: 10.3390/molecules22030369

    12. [12]

      Fonseca, T.; Gigante, B.; Marques, M. M.; Gilchrist, T. L.; De Clercq, E. Bioorg. Med. Chem. 2004, 12, 103. doi: 10.1016/j.bmc.2003.10.013

    13. [13]

      Savluchinske-Feio, S.; Nunes, L.; Pereira, P. T.; Silva, A. M.; Roseiro, J. C.; Gigante, B.; Marcelo Curto, M. J. J. Microbiol. Methods 2007, 70, 465. doi: 10.1016/j.mimet.2007.06.001

    14. [14]

      Chen, N.; Duan, W.; Lin, G.; Liu, L.; Zhang, R.; Li, D. Mol. Diversity 2016, 20, 897. doi: 10.1007/s11030-016-9691-x

    15. [15]

      Sepúlveda, B.; Astudillo, L.; Rodríguez, J. A.; Yáñez, T.; Theoduloz, C.; Schmeda-Hirschmann, G. Pharmacol. Res. 2005, 52, 429. doi: 10.1016/j.phrs.2005.06.004

    16. [16]

      Liu, L.; Yan, X. Y.; Gao, Y. Q.; Rao, X. P. Comb. Chem. High Throughput Screen. 2016, 19, 193. doi: 10.2174/1386207319666160121114341

    17. [17]

      Kang, M. S.; Hirai, S.; Goto, T.; Kuroyanagi, K.; Lee, J. Y.; Uemura, T.; Ezaki, Y.; Takahashi, N.; Kawada, T. Biochem. Biophys. Res. Commun. 2008, 369, 333. doi: 10.1016/j.bbrc.2008.02.002

    18. [18]

      Wada, H.; Kodato, S.; Kawamori, M.; Morikawa, T.; Nakai, H.; Takeda, M.; Saito, S.; Onoda, Y.; Tamaki, H. Chem. Pharm. Bull. 1985, 33, 1472. doi: 10.1248/cpb.33.1472

    19. [19]

      Tolmacheva, I. A.; Tarantin, A. V.; Boteva, A. A.; Anikina, L. V.; Tolstikov, A. G. Pharm. Chem. J. 2006, 40, 489. doi: 10.1007/s11094-006-0161-0

    20. [20]

      Mihu, M. R.; Cabral, V.; Pattabhi, R.; Tar, M. T.; Davies, K. P.; Friedman, A. J.; Martinez, L. R.; Nosanchuk, J. D. Antimicrob. Agents. Chemother. 2017, 61, e02020. doi: 10.1128/AAC.02020-16

    21. [21]

      Zhao, J.; Gou, S.; Sun, Y.; Yin, R.; Wang, Z. Chemistry 2015, 18, 14276. doi: 10.1016/j.bmcl.2014.12.085

    22. [22]

      Bao, N.; Ou, J. F.; Li, N.; Zou, P.; Sun, J. B.; Chen, L. Eur. J. Med. Chem. 2018, 54, 1.

    23. [23]

      Naimi, E.; Zhou, A.; Khalili, P.; Wiebe, L. I.; Balzarini, J.; De Clercq, E.; Knaus, E. E. J. Med. Chem. 2003, 46, 995. doi: 10.1021/jm020299r

    24. [24]

      Guo, Y.; Wang, Y.; Li, H.; Wang, K.; Wan, Q.; Li, J.; Zhou, Y.; Chen, Y. ACS Med. Chem. Lett. 2018, 9, 502. doi: 10.1021/acsmedchemlett.8b00125

    25. [25]

      Ai, Y.; Kang, F.; Huang, Z.; Xue, X.; Lai, Y.; Peng, S.; Tian, J.; Zhang Y. J. Med. Chem. 2015, 58, 2452. doi: 10.1021/jm5019302

    26. [26]

      Xu, S.; Wang, G.; Lin, Y.; Zhang, Y.; Pei, L.; Yao, H.; Hu, M.; Qiu, Y.; Huang, Z.; Zhang, Y.; Xu, J. Bioorg. Med. Chem. Lett. 2016, 26, 2795. doi: 10.1016/j.bmcl.2016.04.068

    27. [27]

      Chen, J.; Wang, T.; Xu, S.; Lin, A.; Yao, H.; Xie, W.; Zhu, Z.; Xu, J. Eur. J. Med. Chem. 2017, 132, 173. doi: 10.1016/j.ejmech.2017.03.027

    28. [28]

      Wang, X.; Pang, F. H.; Huang, L.; Yang, X. P.; Ma, X. L.; Jiang, C. N.; Li, F. Y.; Lei, F. H. Int. J. Mol. Sci. 2018, 19, 3116. doi: 10.3390/ijms19103116

    29. [29]

      Li, F. Y.; Huang, L.; Li, Q.; Wang, X.; Ma, X. L.; Jiang, C. N.; Duan, W. G.; Lei, F. H. Molecules 2019, 24, 4191. doi: 10.3390/molecules24224191

    30. [30]

      Li, F. Y.; Wang, X.; Duan, W. G.; Lin, G. S. Molecules 2017, 22, 1087. doi: 10.3390/molecules22071087

    31. [31]

      Lin, G. S.; Duan, W. G.; Yang, L. X.; Huang, M.; Lei, F. H. Molecules 2017, 22, 193. doi: 10.3390/molecules22020193

    32. [32]

      Sakuma, T.; Sato, K. US 13/380388, 2012.

    33. [33]

      Cui, Y. M.; Yasutomi, E.; Otani, Y.; Yoshinaga, T.; Ido, K.; Sawada, K.; Ohwada, T. Bioorg. Med. Chem. Lett. 2008, 18, 5201. doi: 10.1016/j.bmcl.2008.08.078

  • Scheme 1  Synthetic route for dehydroabietic acid-based nitrate compounds 5a~5r

    Figure 1  NO released amounts of the target compounds in CNE-2 cells for 24 h (mean±SD, n=3)

    Table 1.  Cytotoxic activity of dehydroabietic acid-based nitrate compounds

    Compd. IC50a/(μmol•L-1)
    CNE-2 HepG2 BEL-7402 HeLa HL-7702 NP69
    DHAA 88.64±0.73 80.36±0.84 46.70±0.55 37.40±0.64 > 100 > 100
    4i 75.84±1.42 61.55±0.37 53.18±1.83 88.28±3.12 > 100 > 100
    4j 60.33±2.54 45.96±0.77 69.24±1.63 73.04±1.08 > 100 > 100
    4k 42.29±0.86 57.58±1.26 48.35±0.48 50.28±0.57 > 100 > 100
    5a 43.88±0.15 50.44±0.08 38.25±0.44 44.32±0.28 > 100 > 100
    5b 35.64±0.48 66.93±0.20 42.11±0.64 38.12±0.15 > 100 > 100
    5c 33.09±0.23 57.34±0.15 24.02±0.62 40.10±0.23 > 100 > 100
    5d 36.32±0.57 34.62±0.17 32.22±0.37 33.44±0.72 > 100 > 100
    5e 20.63±0.66 25.84±0.22 50.78±0.32 14.14±0.21 > 100 > 100
    5f 25.44±0.74 21.94±0.54 14.88±0.30 27.34±0.64 > 100 > 100
    5g 27.26±0.55 30.17±0.32 18.40±0.24 67.33±0.46 > 100 > 100
    5h 18.20±0.16 20.46±0.18 17.52±0.64 55.45±0.40 74.39±0.19 89.35±0.56
    5i 34.16±0.43 30.64±0.24 44.72±0.46 65.15±0.74 > 100 > 100
    5j 8.36±0.14 13.00±0.61 55.33±0.42 23.36±0.44 > 100 > 100
    5k 16.84±0.34 8.83±0.65 35.14±0.13 12.06±0.52 87.66±0.43 > 100
    5l 22.33±0.56 15.29±0.42 38.78±0.36 7.88±0.58 > 100 > 100
    5m 9.24±0.40 34.88±0.10 32.47±0.42 8.42±0.70 > 100 > 100
    5n 66.89±0.67 10.40±0.27 11.23±0.21 15.16±0.81 88.18±0.23 > 100
    5o 25.00±0.11 30.53±0.82 14.66±0.40 42.51±0.18 > 100 > 100
    5p 15.66±0.42 22.08±0.45 44.05±0.30 14.06±0.16 > 100 > 100
    5q 9.63±0.33 13.90±0.16 33.88±0.08 4.57±0.41 65.28±0.35 92.86±0.75
    5r 20.87±0.08 28.66±0.43 18.93±0.37 34.78±0.13 > 100 > 100
    Cisplatin 8.75±0.24 6.42±0.18 12.68±0.33 1.94±0.20 20.76±0.83 10.74±0.52
    a Data represent the means±S.D. from three independent experiments.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  876
  • HTML全文浏览量:  114
文章相关
  • 发布日期:  2020-09-01
  • 收稿日期:  2020-03-29
  • 修回日期:  2020-05-23
  • 网络出版日期:  2020-06-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章