

Citation: Pan Guoshuai, Wu Kongchuan, Deng Zeying, Zhang Xinyu, Zhang Xiaofeng, Lin Shen, Huang Qiufeng. Palladium-Catalyzed C—H Direct Arylation of Uracils and Caffeines with Arenes Using Molecular Oxygen as the Sole Oxidant[J]. Chinese Journal of Organic Chemistry, 2018, 38(8): 2076-2084. doi: 10.6023/cjoc201802008

氧气作为唯一氧化剂的钯催化咖啡因或尿嘧啶C—H键直接芳基化反应
English
Palladium-Catalyzed C—H Direct Arylation of Uracils and Caffeines with Arenes Using Molecular Oxygen as the Sole Oxidant
-
交叉脱氢偶联反应(CDC反应)是指两分子C—H键在催化条件下直接脱氢偶联构建C—C键的反应. CDC反应取代了传统交叉偶联反应中卤化物或拟卤化物的使用而引起有机工作者们的广泛关注, 近年来取得了许多突破性研究成果[1]. CDC反应是氧化反应, 反应过程中通常需要添加化学计量氧化剂[2]或者使用催化量铜盐、苯醌和杂多酸等作为共氧化剂, 氧气(O2)为终端氧化剂[3], 但是氧化剂或共氧化剂的添加量大, 使反应变得复杂同时对环境也不友好, 不利于工业化生产.廉价易得且对环境友好的O2作为CDC反应中的唯一氧化剂是最佳选择, 反应后只有副产物水或过氧化氢[4].目前以O2作为唯一氧化剂的CDC反应尚处于起步阶段, 所报道的反应种类不多[5].典型的几个例子, 比如Yu等[5a]报道的O2作为唯一氧化剂的钯催化缺电子芳烃的直接烯烃化反应; Buchwald等[5b]报道的钯催化苯胺邻位直接芳基化反应; Wang等[5c]报道的钯催化二氢吲哚C-7位的直接烯烃化反应; Hong等[5d]报道的钯催化香豆素的直接烯烃化反应; Yu等[5e]报道的钯催化苯乙酸衍生物的直接烯烃化反应; Shi等[5f]报道的钯催化苯酚衍生物的直接烯烃化反应; Yu等[5g]报道的铑催化N-五氟苯基苯甲酰胺的直接烯烃化反应等.我们课题组也报道了O2作为唯一氧化剂的醋酸钯催化含氟芳烃的直接烯烃化反应和直接芳基化反应[6]; 以及钯催化咖啡因或尿嘧啶C—H键的直接烯烃化反应[7].咖啡因或尿嘧啶的芳基衍生物是一类重要化合物, 在生物分析、生物科学和医药方面都有广泛用途[8], 其简便有效的制备方法一直是有机工作者研究的热点之一. 2011年, Beifuss等[9]报道了Pd(OAc)2催化咖啡因与苯的CDC反应, 反应分离产率为75%, 催化反应体系中使用3 equiv.碳酸银作为氧化剂. 2011年, Kim等[10]报道了Pd(OAc)2催化尿嘧啶C—H键与苯的CDC反应, 得到5-芳基与6-芳基尿嘧啶混合物, 催化反应体系中使用3 equiv.碳酸银作为氧化剂.本文报道了O2作为唯一氧化剂的钯催化咖啡因或尿嘧啶衍生物的直接芳基化反应, 为咖啡因或尿嘧啶的芳基衍生物的制备提供更加简便绿色的方法(Scheme 1).
图式 1
图式 1. 氧气为唯一氧化剂的钯催化尿嘧啶或咖啡因的直接芳基化反应Scheme 1. Palladium-catalyzed C—H arylation of uracils or caffeines using oxygen as the sole oxidant1. 结果与讨论
我们选取1, 3-二甲基尿嘧啶(1a)与苯(2a)的脱氢偶联反应作为模板反应对催化剂、溶剂、添加剂、碱以及反应时间进行了考察, 结果见表 1.从表中可以看出只有钯系化合物对反应有活性(表 1, Entries 1~4), 使用其他种类金属催化剂反应基本不能进行(表 1, Entries 5~6).钯系催化剂中特戊酸钯催化活性最高, 反应产物为5-芳基和6-芳基尿嘧啶混合物, 其中6-芳基尿嘧啶为优势产物(表 1, Entry 3).反应在DMA溶剂中进行时目标产物产率最高, 其次是DMF和乙酸丁酯(表 1, Entries 7~8), 而在乙酸、DMSO溶剂中反应基本不能发生(表 1, Entries 9~10). 2010年Yu等[11]报道了单氮保护氨基酸(MPAAs)配体可以加快Pd(Ⅱ)催化C—H键活化并官能团化反应的速率.为此我们对添加不同MPAAs对反应的影响进行了考察(表 1, Entries 11~14).从表中可以看出多数MPAAs对模板反应的促进作用较小, 有些MPAAs配体的加入反而阻碍了反应的进行, 甚至使反应不能进行.只有Ac-Ala-OH对反应有所帮助, 产物产率从68%略微提高至73%(表 1, Entry 14). C—H键活化过程中加入碱通常可以中和反应过程中产生的酸, 碱对尿嘧啶与苯的脱氢偶联反应至关重要, 只有在碱存在的条件下反应才能进行(表 1, Entries 14~17), 其中添加Cs2CO3时反应的产率最高.最后, 我们发现延长反应时间至48 h时, 总产率可以从73%提高至83%(表 1, Entry 18).减少苯的使用量(1.5 mL或1.0 mL), 都导致反应总产率大幅度下降(表 1, Entries 19~20).综上, 最佳反应条件为1a (0.2 mmol), 2a (2 mL), Pd(OPiv)2 (10 mol%), Ac-Ala-OH (10 mol%), PivOH (2 equiv.), Cs2CO3 (40 mol%), DMA (2 mL), O2 (1×105 Pa), 140 ℃, 48 h.
表 1
Entry Cat. Solvent Amino acid Base t/h Yieldb/% 3a 3a' 1 Pd(OAc)2 DMA Cs2CO3 24 53 4 2 Pd(TFA)2 DMA Cs2CO3 24 53 11 3 Pd(OPiv)2 DMA Cs2CO3 24 58 10 4 PdCl2 DMA Cs2CO3 24 38 3 5 Ru(cod)Cl2 DMA Cs2CO3 24 0 0 6 [Cp*RhCl2]2 DMA Cs2CO3 24 0 0 7 Pd(OPiv)2 DMF Cs2CO3 24 37 2 8 Pd(OPiv)2 CH3CO2Bu-n Cs2CO3 24 25 Trace 9 Pd(OPiv)2 DMSO Cs2CO3 24 Trace 0 10 Pd(OPiv)2 HOAc Cs2CO3 24 0 0 11 Pd(OPiv)2 DMA DL-pGlu-OH Cs2CO3 24 Trace 0 12 Pd(OPiv)2 DMA Boc-Val-OH Cs2CO3 24 29 Trace 13 Pd(OPiv)2 DMA Ac-Val-OH Cs2CO3 24 15 0 14 Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 24 68 5 15 Pd(OPiv)2 DMA Ac-Ala-OH 24 0 0 16 Pd(OPiv)2 DMA Ac-Ala-OH K2CO3 24 23 Trace 17 Pd(OPiv)2 DMA Ac-Ala-OH Cs(OAc)2 24 39 3 18 Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 48 77 6 19c Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 48 49 5 20d Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 48 39 Trace aReaction conditions: 1a (0.2 mmol), 2a (2 mL), catalyst (10 mol%), PivOH (2 equiv.), MPAAs (10 mol%), base (0.4 equiv.), O2 (101 kPa) in solvent (2 mL) at 140 ℃ for 24~48 h. DMA=N, N-dimethylacetamide, Cp*=pentamethylcyclopentadienyl, cod=1, 5-cyclooctadiene. b 1H NMR yield on the basis of the amount of 1a used. c 1.5 mL 2a. d 1.0 mL 2a. 接着我们对尿嘧啶衍生物与苯衍生物的脱氢偶联反应的底物适用范围进行了考察(图 1). 1, 3-二甲基尿嘧啶(1a)与苯衍生物反应主要得到C-6偶联产物.单取代苯与1a反应主要得到间位与对位两种异构体的混合物, 其中以间位产物为主.如1, 3-二甲基尿嘧啶与甲苯、乙苯、异丙苯以及叔丁基苯的反应分别得到m/p=2:1, m/p=9:5, m/p=3:2与m/p=10:7的混合产物(3b~3e).而甲氧基苯反应后得到m/p/o=8:4:1三种异构体的混合产物(3g). 1a与萘反应则得到产率为31%的目标产物, 反应发生在萘环β位(3f). 1a与双取代苯环如邻二甲苯、间二甲苯反应均得到单一C6偶联产物, 反应发生在苯环位阻较小位置上, 产率分别为56% (3h)和52% (3i).尿嘧啶环上的取代基对反应有较大的位阻效应, 当N1, N3取代基为丙基时, 反应产率降低至60%且C-5/C-6=1:1 (3j). N1, N3取代基为苄基时, 产率下降至22%, 并且C-5偶联产物为优势产物(C-5/C-6=2:1) (3k).最后C5或C6位被甲基取代时, 反应不会发生, 原料全部回收(3l, 3m).
图 1
在同样反应条件下, 咖啡因C8—H键也能与苯C—H发生脱氢偶联反应, 底物适用范围的考察见图 2.苯环上的电子效应对反应活性影响不大, 无论是给电子基团还是吸电子基团反应都能顺利进行.反应产物多数为混合物, 单取代苯反应后大多得到邻、间、对三种产物, 其中间位为主要产物, 对位次之, 邻位最少.如咖啡因与甲苯反应得到m:p:o=8:4:1的8-芳基咖啡因衍生物(4b); 与乙苯反应得到m:p:o=16:8:1的混合产物(4d); 与氟苯脱氢偶联得到m:p:o=23:9:1的混合产物(4h); 与苯甲腈脱氢偶联得到m:p:o=5:2:1的混合产物(4i).咖啡因与叔丁基苯, 甲氧基苯或苯基酸乙酯的反应则因为位阻影响, 邻位取代忽略不计, 分别得到m:p=5:3 (4e), m:p=3:1 (4f)和m: p=7:5 (4g)的混合产物.咖啡因与硝基苯反应只得到产率为60%的对位产物(4j).邻二甲苯与咖啡因反应得到unsim:vic=17:1的混合产物(4c).上述结果表明苯环上的取代基对反应的选择性有明显位阻效应.此外我们还探讨了咖啡因衍生物与苯的脱氢偶联反应.咖啡因上取代基的位阻对反应活性有一定影响. 3-乙基、3-丙基或3-苄基取代的咖啡因可以顺利地与苯进行芳基化反应, 反应产物产率中等或良好(4n~4p). 7-乙基咖啡因也能得到较高产率的8-芳基化咖啡因衍生物(4k), 但是大位阻的7-苄基取代咖啡因不发生反应(4m). N-7上接有烯丙基时, 反应也不能进行.这可能是因为烯丙基靠近反应中心, 容易与中心金属Pd进行配位, 影响了钯对C—H键的催化活化.由于可可碱与茶碱上N—H键没有基团保护, 使得裸N有很强的配位能力, 可以在反应过程中与过渡金属Pd配位, 从而影响Pd催化剂的催化性能, 使得反应也不能进行(4q, 4r).
图 2
2. 结论
本文探讨了使用氧气作为唯一氧化剂的尿嘧啶或咖啡因的直接芳基化反应, 反应最佳条件为尿嘧啶或咖啡因(0.3 mmol), 芳烃(2 mL), Pd(OPiv)2 (10 mol%), Ac-Ala-OH (10 mol%), PivOH (2 equiv.), Cs2CO3 (40 mol%), DMA (2 mL), O2 (1×105 Pa), 140 ℃, 反应时间48 h.催化反应底物适用范围广, 对许多官能团有较好的兼容性.反应使用氧气作为唯一氧化剂, 且反应压力为一个大气压, 反应条件温和, 操作简便.本文所建立的催化反应体系为尿嘧啶或咖啡因的芳基衍生物的制备提供了简便绿色的路线.
3. 实验部分
3.1 仪器与试剂
1H NMR和13C NMR用Bruker AM-400 (400 MHz)型核磁共振仪器测定, TMS为内标; HRMS数据采用BrukermicrOTO Ⅱ (ESI-QTOF)仪器测定.所有试剂分析纯, 均为商业购买, 直接用于实验, 溶剂经过严格除水干燥处理; 柱层析硅胶(200~300目)为青岛海洋化工有限公司生成, 购买后直接使用.
3.2 钯催化咖啡因或尿嘧啶直接芳基化反应
在O2气氛下称取尿嘧啶或咖啡因(0.3 mmol, 1 equiv), 苯(2 mL), Pd(OPiv)2 (0.03 mmol, 10 mol%), Cs2CO3 (0.12 mmol, 40 mol%), Ac-Ala-OH (0.03 mmol, 10 mol%), PivOH (0.6 mmol, 2 equiv.), DMA (2 mL)至Schlenk反应瓶中, 反复重换气3次后充入O2 (1×105 Pa).将Schlenk瓶置于140 ℃的油浴锅搅拌反应48 h.冷却至室温后加入乙酸乙酯.萃取, 真空去除DMA.在反应混合物中加入CH2Br2(约15 mg)作为内标计算核磁产率.使用柱层析法以石油醚/乙酸乙酯为淋洗剂进行分离, 得到目标产物.
1, 3-二甲基-6-苯基嘧啶-2, 4(1H, 3H)-二酮(3a)和1, 3-二甲基-5-苯基嘧啶-2, 4(1H, 3H)-二酮(3a') (3a:3a'=13:1): 1H NMR (400 MHz, CDCl3) δ: 7.52~7.44 (m, 3H, 3a+3a'), 7.34~7.30 (m, 2H, 3a+3a'), 5.69 (s, 1H, 3a), 3.47 (s, 3H, 3a'), 3.42 (s, 3H, 3a'), 3.39 (s, 3H, 3a), 3.21 (s, 3H, 3a); 13C NMR (100 MHz, CDCl3) δ: 162.6, 154.7, 152.8, 133.4, 130.3, 129.1, 127.9, 102.6, 34.7, 28.1. HRMS calcd for C12H13N2O2 [M+H]+: 217.0972; found 217.0976.
1, 3-二甲基-6-(m-甲苯基)嘧啶-2, 4(1H, 3H)-二酮(m-3b)和1, 3-二甲基-6-(p-甲苯基)嘧啶-2, 4(1H, 3H)-二酮(p-3b) (m:p=2:1): 1H NMR (400 MHz, CDCl3) δ: 7.33 (d, J=7.6 Hz, 2H, p-3b), 7.29~7.25 (m, 2H, m-3b), 7.20~7.18 (m, 1H, m-3b), 7.11 (s, 1H, m-3b), 7.10 (d, J=7.6 Hz, 2H, p-3b), 5.66 (s, 1H, m-3b or p-3b), 3.37 (s, 3H, m-3b or p-3b), 3.20 (s, 3H, p-3b), 3.19 (s, 3H, m-3b), 2.39 (s, 3H, m-3b or p-3b); 13C NMR (100 MHz, CDCl3) δ: 162.6, 154.9, 152.7, 140.5, 139.0, 133.3, 131.0, 130.5, 129.7, 128.9, 128.3, 127.7, 124.9, 102.3, 34.7, 28.1, 27.2, 21.5. HRMS calcd for C13H15N2O2 [M+H]+: 231.1128; found 231.1134.
6-(3-乙基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(m-3c)和6-(4-乙基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(p-3c) (m:p=9:5): 1H NMR (400 MHz, CDCl3) δ: 7.37 (d, J=7.5 Hz, 2H, p-3c), 7.33~7.29 (m, 2H, m-3c), 7.24~7.22 (m, 1H, m-3c), 7.14 (s, 1H, m-3c), 7.13 (d, J=7.5 Hz, 2H, p-3c), 5.69 (s, 1H, m-3c), 5.68 (s, 1H, p-3c), 3.40 (s, 3H, m-3c or p-3c), 3.22 (s, 3H, p-3c), 3.21 (s, 3H, m-3c), 2.73~2.67 (m, 2H, m-3c or p-3c), 1.29~1.22 (m, 3H, m-3c or p-3c); 13C NMR (100 MHz, CDCl3) δ: 162.6, 155.0, 154.9, 152.8, 146.8, 145.3, 133.4, 130.8, 129.9, 129.0, 128.5, 127.9, 127.3, 125.2, 102.5, 34.7, 28.8, 28.1, 15.5, 15.4. HRMS calcd for C14H17N2O2 [M+H]+: 245.1285; found 245.1285.
6-(3-异丙基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(m-3d)和6-(4-异丙基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(p-3d) (m:p=3:2): 1H NMR (400 MHz, CDCl3) δ: 7.37 (d, J=7.2 Hz, 2H, p-3d), 7.35~7.31 (m, 2H, m-3d), 7.26~7.22 (m, 1H, m-3d), 7.16 (s, 1H, m-3d), 7.12 (d, J=7.2 Hz, 2H, p-3d), 5.69 (s, 1H, m-3d), 5.68 (s, 1H, p-3d), 3.39 (s, 3H, m-3d or p-3d), 3.22 (s, 3H, p-3d), 3.21 (s, 3H, m-3d), 2.99~2.91 (m, 1H, m-3d or p-3d), 1.28~1.26 (m, 6H, m-3d or p-3d); 13C NMR (100 MHz, CDCl3) δ: 162.6, 155.1, 154.9, 152.8, 151.4, 150.0, 133.4, 130.8, 129.0, 128.5, 127.9, 127.1, 125.9, 125.3, 102.4, 34.8, 34.7, 34.1, 28.1, 24.1, 24.0, 23.9. HRMS calcd for C15H19N2O2 [M+H]+: 259.1441; found 259.1440.
6-(3-叔丁基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(m-3e)和6-(4-叔丁基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(p-3e) (m:p=10:7): 1H NMR (400 MHz, CDCl3) δ: 7.51 (d, J=7.5 Hz, 2H, p-3e), 7.48 (d, J=8.4 Hz, 1H, m-3e), 7.40 (t, 1H, J=7.7 Hz, m-3e), 7.16 (s, 1H, m-3e), 7.32 (s, 1H, m-3e), 7.25 (d, J=8.2 Hz, 1H, m-3e), 7.13 (d, J=7.5 Hz, 2H, p-3e), 5.71 (s, 1H, m-3e), 5.69 (s, 1H, p-3e), 3.40 (s, 3H, m-3e), 3.39 (s, 3H, p-3e), 3.23 (s, 3H, p-3e), 3.22 (s, 3H, m-3e), 1.34 (s, 9H, p-3e), 1.33 (s, 9H, m-3e); 13C NMR (100 MHz, CDCl3) δ: 162.6, 155.3, 153.7, 152.9, 152.4, 133.2, 128.8, 127.7, 127.3, 126.0 124.9, 102.5, 35.0, 34.8, 31.3, 31.3, 28.1. HRMS calcd for C16H21N2O2 [M+H]+: 273.1598; found 273.1600.
1, 3-二甲基-6-(2-萘基)嘧啶-2, 4(1H, 3H)-二酮(3f): 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J=8.5 Hz, 1H), 7.93~7.88 (m, 2H), 7.86~7.83 (m, 1H), 7.62~7.58 (m, 2H), 7.38 (dd, J=8.5, 1.8 Hz, 1H), 5.81 (s, 1H), 3.43 (s, 3H), 3.27 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 162.6, 154.8, 152.9, 133.7, 132.9, 130.8, 129.0, 128.5, 128.0, 127.9, 127.5, 124.6, 102. 9, 34.8, 28.2. HRMS calcd for C16H15N2O2 [M+H]+: 267.1128; found 267.1125.
6-(3-甲氧基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(m-3g)和6-(4-甲氧基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(p-3g)和6-(2-甲氧基苯基)-1, 3-二甲基嘧啶- 2, 4(1H, 3H)-二酮(o-3g) (m:p:o=9:5:1): 1H NMR (400 MHz, CDCl3) δ: 7.40 (t, J=8.0 Hz, 1H, m-3g), 7.27 (d, J=8.5 Hz, 2H, p-3g), 7.03 (dd, J=8.5, 2.4 Hz, 1H, m-3g), 6.99 (d, J=8.5 Hz, 2H, p-3g), 6.90 (d, J=7.6 Hz, 1H, m-3g), 6.85 (s, 1H, m-3g), 5.73 (s, 1H, m-3g), 5.70 (s, 1H, p-3g), 3.87 (s, 3H, p-3g), 3.85 (s, 3H, m-3g), 3.41 (s, 3H, m-3g or p-3g), 3.25 (s, 3H, p-3g), 3.23 (s, 3H, m-3g); 13C NMR (100 MHz, CDCl3) δ: 162.7, 159.9, 154.6, 152.7, 134.6, 130.3, 129.4, 120.0, 115.6, 114.4, 113.7, 102.4, 55.5, 34.8, 34.7, 28.2, 27.2. HRMS calcd for C13H15N2O3 [M+H]+: 247.1077; found 247.1079.
6-(3, 4-二甲基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(3h): 1H NMR (400 MHz, CDCl3) δ: 7.22 (d, J=7.7 Hz, 1H), 7.07 (s, 1H), 7.04 (d, J=7.7 Hz, 1H), 5.66 (s, 1H), 3.39 (s, 3H), 3.22 (s, 3H), 2.31 (s, 3H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 162.7, 155.1, 152.9, 139.2, 137.6 131.0, 130.2, 128.9, 125.3, 102.3, 34.7, 28.1, 19.9, 19.8. HRMS: calcd for C14H17N2O2 [M+H]+: 245.1285; found 245.1279.
6-(3, 5-二甲基苯基)-1, 3-二甲基嘧啶-2, 4(1H, 3H)-二酮(3i): 1H NMR (400 MHz, CDCl3) δ: 7.11 (s, 1H), 6.91 (s, 2H), 5.66 (s, 1H), 3.39 (s, 3H), 3.21 (d, J=0.7 Hz, 3H), 2.36 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 162.7, 155.1, 152.9, 139.2, 137.6, 131.0, 130.2, 128.9, 125.3, 102.3, 34.7, 28.1, 19.9, 19.8. HRMS calcd for C14H17N2O2 [M+H]+: 245.1285; found 245.1286.
1, 3-二丙基-6-苯基嘧啶-2, 4(1H, 3H)-二酮(3j)和1, 3-二丙基-5-苯基嘧啶-2, 4(1H, 3H)-二酮(3j') (3j:3j'=1:1): 1H NMR (400 MHz, CDCl3) δ: 7.52~7.43 (m, 5H), 7.37 (m, 2H), 7.34~7.29 (m, 3H), 7.27 (s, 1H, 3j'), 5.60 (s, 1H, 3j), 4.01~3.90 (m, 4H), 3.81~3.74 (m, 2H), 3.64~3.57 (m, 2H), 1.71 (m, 6H), 1.50 (m, 2H), 1.01~0.91 (m, 9H), 0.69 (t, J=7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 162.3, 162.1, 154.6, 152.1, 151.1, 140.0, 133.6, 133.2, 130.0, 129.1, 128.9, 128.5, 128.4, 127.9, 114.4, 103.1, 51.5, 48.0, 43.4, 43.0, 22.2, 22.2, 21.0, 11.5, 11.1, 11.0. HRMS calcd for C16H21N2O2 [M+H]+: 273.1598; found 273.1599.
1, 3-二苄基-6-苯基嘧啶-2, 4(1H, 3H)-二酮(3k)和1, 3-二苄基-5-苯基嘧啶-2, 4(1H, 3H)-二酮(3k') (3k:3k'=1:2): 1H NMR (400 MHz, CDCl3) δ: 7.57~7.14 (m, 15H, 3k or 3k'), 6.87 (s, 1H, 3k'), 5.72 (s, 1H, 3k), 5.24 (s, 2H, 3k'), 5.22 (s, 2H, 3k), 5.00 (s, 2H, 3k'), 4.94 (s, 2H, 3k); 13C NMR (100 MHz, CDCl3) δ: 162.0, 151.5, 139.5, 137.0, 135.4, 132.9, 130.2, 129.5, 129.3, 128.8, 128.7, 128.6, 128.5, 128.5, 128.2, 128.1, 127.8, 127.7, 126.8, 115.285, 103.684, 52.6, 49.6, 45.1, 44.8. HRMS calcd for C24H21- N2O2 [M+H]+: 369.1598; found 369.1593.
1, 3, 7-三甲基-8-苯基-3, 7-二氢-1H-嘌呤-2, 6-二酮(4a): 1H NMR (400 MHz, CDCl3) δ: 7.72~7.64 (m, 2H), 7.56~7.49 (m, 3H), 4.06 (s, 3H), 3.63 (s, 3H), 3.43 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.7, 152.2, 151.8, 148.4, 130.5, 129.3, 129.1, 128.5, 108.7, 34.0, 29.9, 28.1. HRMS calcd for C14H15N4O2 [M+H]+: 271.1190; found 271.1187.
1, 3, 7-三甲基-8-间甲苯基-3, 7-二氢-1H-嘌呤-2, 6-二酮(m-4b), 1, 3, 7-三甲基-8-对甲苯基-3, 7-二氢-1H-嘌呤- 2, 6-二酮(p-4b)和1, 3, 7-三甲基-8-邻甲苯基-3, 7-二氢- 1H-嘌呤-2, 6-二酮(o-4b) (m:p:o=8:4:1): 1H NMR (400 MHz, CDCl3) δ: 7.57 (d, J=8.2 Hz, 2H, p-4b), 7.50 (s, 1H, m-4b), 7.46~7.31 (m, 3H, m-4b or 2H, p-4b or 4H, o-4b), 4.04 (s, 3H, m-4b), 4.03 (s, 3H, p-4b), 3.77 (s, 3H, o-4b), 3.62 (s, 3H, m-4b), 3.61 (s, 3H, p-4b), 3.61 (s, 3H, o-4b), 3.43 (s, 3H, o-4b), 3.42 (s, 3H, m-4b), 3.42 (s, 3H, p-4b), 2.43 (s, 3H, m-4b), 2.42 (s, 3H, p-4b), 2.24 (s, 3H, o-4b); 13C NMR (100 MHz, CDCl3) δ: 155.7, 152.4, 151.8, 148.4, 140.8, 139.0, 131.3, 130.9, 130.7, 130.1, 130.0, 129.7, 129.2, 128.8, 128.4, 126.2, 125.6, 108.6, 108.5, 34.0, 33.1, 29.9, 28.1, 21.6, 19.8. HRMS calcd for C15H17N4O2 [M+H]+: 285.1346; found 285.1346.
1, 3, 7-三甲基-8-(2, 3-二甲基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(unsym-4c)和1, 3, 7-三甲基-8-(3, 4-二甲基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(vic-4c) (unsim:vic=17:1): 1H NMR (400 MHz, CDCl3) δ: 7.48 (s, 1H), 7.40 (d, J=7.8 Hz, 1H), 7.28 (d, J=7.8 Hz, 1H), 4.05 (s, 3H), 3.64 (s, 3H), 3.45 (s, 3H), 2.36 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 155.7, 152.6, 151.9, 148.4, 139.6, 137.6, 130.4, 130.1, 126.5, 125.9, 108.5, 34.0, 29.9, 28.1, 21.8, 19.9. HRMS calcd for C16H19N4O2 [M+H]+: 299.1503; found 299.1501.
1, 3, 7-三甲基-8-(3-乙基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(m-4d), 1, 3, 7-三甲基-8-(4-乙基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(p-4d)和1, 3, 7-三甲基-8-(2-乙基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(o-4d) (m:p:o=16:8:1): 1H NMR (400 MHz, CDCl3) δ: 7.59 (d, J=8.2 Hz, 2H, p-4d), 7.51 (s, 1H, m-4d), 7.45~7.33 (m, 3H, m-4d or 2H, p-4d or 4H, o-4d), 4.04 (s, 3H, m-4d), 4.04 (s, 3H, p-4d), 3.77 (s, 3H, o-4d), 3.63 (s, 3H, m-4d), 3.62 (s, 3H, p-4d), 3.61 (s, 3H, o-4d), 3.44 (s, 3H, o-4d), 3.43 (s, 3H, m-4d), 3.42 (s, 3H, p-4d), 2.76~2.69 (m, 2H, m-4d or p-4d or o-4d), 1.30~1.21 (m, 3H, m-4d or p-4d or o-4d); 13C NMR (100 MHz, CDCl3) δ: 155.7, 152.6, 152.5, 151.9, 148.4, 145.3, 130.2, 129.3, 128.9, 128.9, 128.6, 128.4, 126.5, 125.8, 108.6, 108.6, 34.0, 29.9, 29.9, 28.9, 28.1, 15.6, 15.5. HRMS calcd for C16H19N4O2 [M+H]+: 299.1503; found 299.1503.
1, 3, 7-三甲基-8-(3-叔丁基苯基)-3, 7-二氢-1H-嘌呤- 2, 6-二酮(m-4e), 1, 3, 7-三甲基-8-(4-叔丁基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(p-4e) (m:p=5:3): 1H NMR (400 MHz, CDCl3) δ: 7.67 (s, 1H, m-4e), 7.61 (d, J=8.4 Hz, 2H, p-4e), 7.53 (d, J=8.4 Hz, 2H, p-4e), 7.54~7.52 (m, 1H, m-4e), 7.47 7.42 (m, 2H, m-4e), 4.05 (s, 3H, p-4e), 4.03 (s, 3H, m-4e), 3.63 (s, 3H, m-4e), 3.61 (s, 3H, p-4e), 3.42 (s, 3H, p-4e or m-4e), 1.36 (s, 9H, m-4e), 1.35 (s, 9H, p-4e); 13C NMR (100 MHz, CDCl3) δ: 155.7, 153.9, 152.9, 152.4, 152.1, 151.9, 148.4, 148.4, 129.0, 128.7, 128.1, 127.7, 126.4, 126.4, 126.0, 125.6, 108.6, 108.5, 35.0, 35.0, 34.0, 31.4, 31.2, 29.9, 29.8, 28.1. HRMS calcd for C18H23N4O2 [M+H]+: 327.1816; found 327.1814.
1, 3, 7-三甲基-8-(3-甲氧基苯基)-3, 7-二氢-1H-嘌呤- 2, 6-二酮(m-4f)和1, 3, 7-三甲基-8-(4-甲氧基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(p-4f): 1H NMR (400 MHz, CDCl3) δ: 7.65 (d, J=8.9 Hz, 2H, p-4f), 7.48~7.42 (m, 1H, m-4f), 7.26~7.22 (m, 2H, m-4f), 7.09~7.03 (m, 1H, m-4f; 2H, p-4f), 4.07 (s, 3H, m-4f), 4.06 (s, 3H, p-4f), 3.89 (s, 3H, m-4f; 3H, p-4f), 3.65 (s, 3H, m-4f), 3.64 (s, 3H, p-4f), 3.45 (s, 3H, m-4f), 3.45 (s, 3H, p-4f); 13C NMR (100 MHz, CDCl3) δ: 161.3, 160.0, 155.7, 155.7, 152.3, 152.1, 151.9, 148.3, 130.8, 130.1, 129.6, 121.4, 120.8, 116.3, 114.9, 114.5, 108.7, 105.1, 55.6, 34.1, 29.9, 28.1. HRMS calcd for C15H17N4O3 [M+H]+: 301.1295; found 301.1301.
3-(1, 3, 7-2, 6-二氧代-2, 3, 6, 7-四氢-1H-嘌呤基)苯甲酸乙酯(m-4g)和4-(1, 3, 7-2, 6-二氧代-2, 3, 6, 7-四氢-1H-嘌呤基)苯甲酸乙酯(p-4g): 1H NMR (400 MHz, CDCl3) δ: 8.35 (s, 1H, m-4g), 8.18 (d, J=8.5 Hz, 2H, p-4g), 8.18 (d, J=8.5 Hz, 1H, m-4g), 7.89 (d, J=8.0 Hz, 1H, m-4g), 7.78 (d, J=8.5 Hz, 2H, p-4g), 7.61 (t, J=7.8 Hz, 1H, m-4g), 4.41 (q, J=7.1 Hz, 4H, m-4g or p-4g), 4.08 (s, 3H, p-4g), 4.07 (s, 3H, m-4g), 3.62 (s, 3H, m-4g), 3.62 (s, 3H, p-4g), 3.43 (s, 3H, m-4g), 3.42 (s, 3H, p-4g), 1.44~1.39 (m, 3H, m-4g or p-4g); 13C NMR (100 MHz, CDCl3) δ: 165.7, 155.7, 151.8, 151.1, 148.4, 133.45 132.5, 132.1, 131.4, 131.4, 130.2, 130.1, 129.3, 129.2, 128.8, 109.1, 108.9, 61.6, 61.6, 34.2, 34.0, 29.9, 28.1, 27.2, 22.3, 14.4. HRMS calcd for C17H19N4O4 [M+H]+: 343.1401; found 343.1410.
1, 3, 7-三甲基-8-(3-氟苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(m-4h), 1, 3, 7-三甲基-8-(4-氟苯基)-3, 7-二氢-1H-嘌呤- 2, 6-二酮(p-4h)和1, 3, 7-三甲基-8-(2-氟苯基)-3, 7-二氢- 1H-嘌呤-2, 6-二酮(o-4h) (m:p:o=23:9:1): 1H NMR (400 MHz, CDCl3) δ: 7.70 (s, 1H, m-4h), 7.64 (d, J=8.4 Hz, 2H, p-4h), 7.58~7.55 (m, 1H, m-4h), 7.53~7.43 (m, 2H, m-4h or p-4h), 4.06 (s, 3H, m-4h), 4.04 (s, 3H, p-4h), 3.81 (s, 1H, o-4h), 3.61 (s, 1H, o-4h), 3.60 (s, 3H, m-4h), 3.60 (s, 3H, p-4h), 3.42 (s, 3H, m-4h or p-4h or o-4h); 13C NMR (100 MHz, CDCl3) δ: 155.7, 151.7, 151.0, 150.5, 148.3, 136.8, 135.2, 130.6, 130.5, 130.3, 130.2, 129.4, 129.4, 127.2, 108.9, 34.0, 29.9, 28.1. HRMS calcd for C14H14FN4O2 [M+H]+: 289.1095; found 289.1091.
1, 3, 7-三甲基-8-(3-氰基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(m-4i), 1, 3, 7-三甲基-8-(4-氰基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(p-4i)和1, 3, 7-三甲基-8-(2-氰基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(o-4i) (m:p:o=5:2:1): 1H NMR (400 MHz, CDCl3) δ: 8.02 (s, 1H, m-4i), 7.96~7.66 (m, 4H, p-4i or o-4i; m, 3H, m-4i), 4.09 (s, 3H, p-4i), 4.08 (s, 3H, m-4i), 3.95 (s, 3H, o-4i), 3.60 (s, 3H, o-4i), 3.59 (s, 3H, m-4i), 3.59 (s, 3H, p-4i), 3.41 (s, 3H, o-4i), 3.40 (s, 3H, m-4i), 3.40 (s, 3H, p-4i); 13C NMR (100 MHz, CDCl3) δ: 155.6, 151.6, 149.6, 149.4, 148.3, 148.2, 148.1, 134.0, 133.6, 133.1, 132.8, 132.7, 131.8, 131.3, 130.9, 130.0, 129.9, 129.8, 118.0, 117.8, 117.0, 114.0, 113.6, 113.6, 109.3, 109.1, 109.1, 34.2, 34.1, 33.8, 29.9, 29.8, 28.1, 27.2. HRMS calcd for C15H14N5O2 [M+H]+: 296.1142; found 296.1145.
1, 3, 7-三甲基-8-(4-硝基苯基)-3, 7-二氢-1H-嘌呤-2, 6-二酮(4j): 1H NMR (400 MHz, CDCl3) δ: 8.39 (d, J=9.0 Hz, 2H), 7.94 (d, J=9.0 Hz, 2H), 4.14 (s, 3H), 3.63 (s, 3H), 3.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.7, 151.7, 149.4, 148.7, 148.4, 134.5, 130.2, 124.2, 109.5, 34.3, 30.0, 28.3. HRMS calcd for C14H14N5O4 [M+H]+: 316.1040; found 316.1038.
1, 3 -二甲基-3-乙基-8苯基-3, 7-二氢-1H-嘌呤-2, 6-二酮(4k): 1H NMR (400 MHz, CDCl3) δ: 7.66~7.59 (m, 2H), 7.55~7.48 (m, 3H), 4.38 (q, J=7.0 Hz, 2H), 3.62 (s, 3H), 3.43 (s, 3H), 1.48 (t, J=7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.2, 151.9, 148.7, 130.5, 129.2, 129.1, 128.8, 107.8, 41.8, 29.9, 28.2, 16.8. HRMS calcd for C15H17N4O2 [M+H]+: 285.1346; found 285.1347.
3, 7 -二甲基-1-乙基-8苯基-3, 7-二氢-1H-嘌呤-2, 6-二酮(4n): 1H NMR (400 MHz, CDCl3) δ: 7.73~7.61 (m, 2H), 7.56~7.43 (m, 3H), 4.09 (q, J=6.9 Hz, 2H), 4.04 (s, 3H), 3.60 (s, 3H), 1.26 (t, J=6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.4, 152.1, 151.4, 148.4, 130.5, 129.3, 129.0, 128.5, 108.8, 36.6, 34.0, 29.8, 13.4. HRMS calcd for C15H17N4O2 [M+H]+: 285.1346; found 285.1335.
3, 7 -二甲基-1-丙基-8苯基-3, 7-二氢-1H-嘌呤-2, 6-二酮(4o): 1H NMR (400 MHz, CDCl3) δ: 7.71~7.66 (m, 2H), 7.55~7.51 (m, 3H), 4.06 (s, 3H), 4.03~3.98 (m, 2H), 3.63 (s, 3H), 1.75~1.67 (m, 2H), 0.99 (t, J=7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.6, 152.1, 151.6, 148.4, 130.5, 129.3, 129.0, 128.5, 108.7, 43.0, 34.0, 29.8, 21.5, 11.5. HRMS calcd for C16H19N4O2 [M+H]+: 299.1503; found 299.1501.
3, 7 -二甲基-1-苄基-8苯基-3, 7-二氢-1H-嘌呤-2, 6-二酮(4p): 1H NMR (400 MHz, CDCl3) δ: 7.71~7.66 (m, 2H), 7.53 (m, 5H), 7.35~7.24 (m, 3H), 5.25 (s, 2H), 4.07 (s, 3H), 3.64 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.5, 152.3, 151.7, 148.5, 137.5, 130.5, 129.3, 129.0, 128.9, 128.5, 128.4, 127.6, 108.7, 44.6, 34.0, 29.9. HRMS calcd for C21H21N4O2 [M+H]+: 361.1659; found 361.1657.
辅助材料(Supporting Information) 化合物3a~4p的1H NMR和13C NMR谱图.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
(a) Roudesly, F. ; Oble, J. ; Poli, G. J. Mol. Catal. A: Chem. 2017, 426, 275.
(b) Wu, Y. ; Wang, J. ; Mao, F. ; Kwong, F. Y. Chem. Asian J. 2014, 9, 26.
(c) Girard, S. A. ; Knauber, T. ; Li, C. -J. Angew. Chem., Int. Ed. 2014, 53, 74.
(d) Yang, Y. ; Lan, J. ; You, J. Chem. Rev. 2017, 117, 8787.
(e) Zhang, M. ; Zhang, Y. ; Jie, X. ; Zhao, H. ; Li, G. ; Su, W. Org. Chem. Front. 2014, 1, 843.
(f) Gensch, T. ; Hopkinson, M. N. ; Glorius, F. ; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
(g) Liu, C. ; Yuan, J. ; Gao, M. ; Tang, S. ; Li, W. ; Shi, R. ; Lei, A. Chem. Rev. 2015, 115, 12138.
(h) Chen, Z. ; Wang, B. ; Zhang, J. ; Yu, W. ; Liu, Z. ; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
(i) Hu, W. ; Long, Y. Chin. J. Org. Chem. 2017, 37, 2850 (in Chinese).
(胡玮, 龙亚秋, 有机化学, 2017, 37, 2850. ) -
[2]
(a) Reddy, M. C. ; Jeganmohan, M. Chem. Commun. 2015, 51, 10738.
(b) Gao, G. -L. ; Xia, W. ; Jain, P. ; Yu, J. -Q. Org. Lett. 2016, 18, 744.
(c) Gong, H. ; Zeng, H. ; Zhou, F. ; Li, C. -J. Angew. Chem., Int. Ed. 2015, 54, 5718.
(d) Yang, Z. ; Qiu, F. -C. ; Gao, J. Li, Z. -W. ; Guan, B. -T. Org. Lett. 2015, 17, 4316.
(e) Lou, S. -J. ; Mao, Y. -J. ; Xu, D. -Q. ; He, J. -Q. ; Chen, Q. ; Xu, Z. -Y. ACS Catal. 2016, 6, 3890.
(f) Huang, Y. ; Wu, D. ; Huang, J. ; Guo, Q. ; Li, J. ; You, J. Angew. Chem., Int. Ed. 2004, 53, 12158.
(g) Qin, D. ; Wang, J. ; Qin, X. ; Wang, C. ; Gao, G. ; You, J. Chem. Commun. 2015, 51, 6190.
(h) Zhang, X. -S. ; Zhang, Y. -F. ; Li, Z. -W. ; Luo, F. -X. ; Shi, Z. -J. Angew. Chem., Int. Ed. 2015, 54, 5478.
(i) Zhang, Y. ; Zhao, H. ; Zhang, M. ; Su, W. Angew. Chem., Int. Ed. 2015, 54, 3817. -
[3]
(a) Li, B. ; Lan, J. ; Wu, D. ; You, J. Angew. Chem., Int. Ed. 2015, 54, 14008.
(b) Gao, D. -W. ; Gu, Q. ; You, S. -L. J. Am. Chem. Soc. 2016, 138, 2544.
(c) Engle, K. M. ; Wang, D. -H. ; Yu, J. -Q. J. Am. Chem. Soc. 2010, 132, 14137.
(d) Wang, D. -H. ; Engle, K. M. ; Shi, B. -F. ; Yu, J. -Q. Science 2010, 327, 315.
(e) Ye. X. ; Shi, X. Org. Lett. 2014, 16, 4448.
(f) Huang, Q. ; Ke, S. ; Qiu, L. ; Zhang, X. ; Lin, S. ChemCatChem 2014, 6, 1531.
(g) Huang, Q. ; Song, Q. ; Cai, J. ; Zhang, X. ; Lin, S. Adv. Synth. Catal. 2013, 355, 1512. -
[4]
(a) Wu, K. ; Song, C. ; Cui, D. Chin. J. Org. Chem. 2017, 37, 586 (in Chinese).
(吴空, 宋婵, 崔冬梅, 有机化学, 2017, 37, 586. )
(b) Cheng, X. ; Hu, X. ; Lu, Z. Chin. J. Org. Chem. 2017, 37, 251 (in Chinese).
(程骁恺, 胡新根, 陆展, 有机化学, 2017, 37, 251. )
(c) Xu, J. ; Song, Q. Chin. J. Org. Chem. 2016, 36, 1151 (in Chinese).
(许键, 宋秋玲, 有机化学, 2016, 36, 1151. )
(d) Pintér, Á. ; Klussmann, M. Adv. Synth. Catal. 2012, 354, 701. -
[5]
(a) Zhang, Y. -H. ; Shi, B. -F. ; Yu, J. -Q. J. Am. Chem. Soc. 2009, 131, 5072.
(b) BraSche, G. ; García-Fortanet, J. ; Buchwald, S. L. Org. Lett. 2008, 10, 2207.
(c) Yang, D. ; Mao, S. ; Gao, Y. -R. ; Guo, D. -D. ; Guo, S. -H. ; Lin B. ; Wang, Y. -Q. RSC Adv. 2015, 2, 3727.
(d) Kim, N. ; Min, M. ; Hong, S. Org. Chem. Front. 2015, 2, 1621.
(e) Engle, K. M. ; Wang, D. -H. ; Yu, J. -Q. Angew. Chem., Int. Ed. 2010, 49, 6169.
(f) Liu, B. ; Jiang, H. -Z. ; Shi, B. -F. J. Org. Chem. 2014, 79, 1521.
(g) Lu, Y. ; Wang, H. -W. ; Spangler, J. E. ; Chen, K. ; Cui, P. -P. ; Zhao, Y. ; Sun, W. -Y. ; Yu, J. -Q. Chem. Sci. 2015, 6, 1923. -
[6]
Huang, Q.; Zhang, X.; Qiu, L.; Wu, J.; Xiao, H.; Zhang, X.; Lin, S. Adv. Synth. Catal. 2015, 357, 3753. doi: 10.1002/adsc.201500632
-
[7]
Zhang, X.; Su, L.; Qiu, L.; Fan, Z.; Zhang, X.; Lin, S.; Huang, Q. Org. Biomol. Chem. 2017, 15, 3499. doi: 10.1039/C7OB00616K
-
[8]
(a) He, L. ; Pei, H. ; Ma, L. ; Pu, Y. ; Chen, J. ; Liu, Z. ; Ran, Y. ; Lei, L. ; Fu, S. ; Tang, M. ; Peng, A. ; Long, C. ; Chen, L. Eur. J. Med. Chem. 2014, 87, 595.
(b) Thomas, R. ; Lee, J. ; Chevalier, V. ; Sadler, S. ; Selesniemi, K. ; Hatfield, S. ; Sitkovsky, M. ; Ondrechen, M. J. ; Jones, G. B. Bioorg. Med. Chem. 2013, 21, 7453.
(c) Kim, S. -M. ; Lee, M. ; Lee, S. Y. ; Park, E. ; Lee, S. -M. ; Kim, E. J. ; Han, M. Y. ; Yoo, T. ; Ann, J. ; Yoon, S. ; Lee, J. ; Lee, J. J. Med. Chem. 2016, 59, 9150.
(d) Qian, H. -Y. ; Wang, Z. -L. ; Pan, Y. -L. ; Chen, L. -L. ; Xie, X. ; Chen, J. -Z. ACS Med. Chem. Lett. 2017, 8, 678.
(e) Rivara, S. ; Piersanti, G. ; Bartoccini, F. ; Diamantini, G. ; Pala, D. ; Riccioni, T. ; Stasi, M. A. ; Cabri, W. ; Borsini, F. ; Mor, M. ; Tarzia, G. ; Minetti, P. J. Med. Chem. 2013, 56, 1247. -
[9]
Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett. 2011, 13, 1378. doi: 10.1021/ol200065s
-
[10]
Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6228. doi: 10.1016/j.tetlet.2011.09.066
-
[11]
(a) Musaev, D. G. ; Figg, T. M. ; Kaledin, A. L. Chem. Soc. Rev. 2014, 43, 5009.
(b) Haines, B. E. ; Musaev, D. G. ACS Catal. 2015, 5, 830.
(c) Li, G. ; Leow, D. ; Wan, L. ; Yu, J. -Q. Angew. Chem., Int. Ed. 2013, 52, 1245.
(d) Musaev, D. G. ; Kaledinm, A. L. ; Shi, B. -F. ; Yu, J. -Q. J. Am. Chem. Soc. 2012, 134, 1690.
(e) Wang, H. -L. ; Hu, R. -B. ; Zhang, H. ; Zhou, A. -X. ; Yang, S. -D. Org. Lett. 2013, 15, 5302.
(f) Cong, X. ; Tang, H. ; Wu, C. ; Zhang, X. Organometallics 2013, 32, 6565.
(g) Cheng, G. -J. ; Yang, Y. -F. ; Liu, P. ; Chen, P. ; Sun, T. -Y. ; Li, G. ; Zhang, X. ; Houk, K. N. ; Yu, J. -Q. ; Wu, Y. -D. J. Am. Chem. Soc., 2014, 136, 894.
-
[1]
-
表 1 反应条件优化a
Table 1. Optimization of the reaction conditions
Entry Cat. Solvent Amino acid Base t/h Yieldb/% 3a 3a' 1 Pd(OAc)2 DMA Cs2CO3 24 53 4 2 Pd(TFA)2 DMA Cs2CO3 24 53 11 3 Pd(OPiv)2 DMA Cs2CO3 24 58 10 4 PdCl2 DMA Cs2CO3 24 38 3 5 Ru(cod)Cl2 DMA Cs2CO3 24 0 0 6 [Cp*RhCl2]2 DMA Cs2CO3 24 0 0 7 Pd(OPiv)2 DMF Cs2CO3 24 37 2 8 Pd(OPiv)2 CH3CO2Bu-n Cs2CO3 24 25 Trace 9 Pd(OPiv)2 DMSO Cs2CO3 24 Trace 0 10 Pd(OPiv)2 HOAc Cs2CO3 24 0 0 11 Pd(OPiv)2 DMA DL-pGlu-OH Cs2CO3 24 Trace 0 12 Pd(OPiv)2 DMA Boc-Val-OH Cs2CO3 24 29 Trace 13 Pd(OPiv)2 DMA Ac-Val-OH Cs2CO3 24 15 0 14 Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 24 68 5 15 Pd(OPiv)2 DMA Ac-Ala-OH 24 0 0 16 Pd(OPiv)2 DMA Ac-Ala-OH K2CO3 24 23 Trace 17 Pd(OPiv)2 DMA Ac-Ala-OH Cs(OAc)2 24 39 3 18 Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 48 77 6 19c Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 48 49 5 20d Pd(OPiv)2 DMA Ac-Ala-OH Cs2CO3 48 39 Trace aReaction conditions: 1a (0.2 mmol), 2a (2 mL), catalyst (10 mol%), PivOH (2 equiv.), MPAAs (10 mol%), base (0.4 equiv.), O2 (101 kPa) in solvent (2 mL) at 140 ℃ for 24~48 h. DMA=N, N-dimethylacetamide, Cp*=pentamethylcyclopentadienyl, cod=1, 5-cyclooctadiene. b 1H NMR yield on the basis of the amount of 1a used. c 1.5 mL 2a. d 1.0 mL 2a. -

计量
- PDF下载量: 5
- 文章访问数: 1976
- HTML全文浏览量: 1072