
用于光催化能量转换的Z-型异质结的研究进展
English
Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion

-
Key words:
- Semiconductor
- / Photocatalysis
- / Z-scheme heterojunction
- / Energy conversion
- / Reaction mechanism
-
-
[1]
Fujishima, A.; Honda, K. Nature 1971, 238, 37. doi: 10.1038/238037a0
-
[2]
Ida, S.; Takashiba, A.; Koga, S.; Hagiwara, H.; Ishihara, T. J. Am. Chem. Soc. 2014, 136, 1872. doi: 10.1021/ja409465k
-
[3]
Zhou, C. Y.; Lai, C.; Huang, D. L.; Zeng, G. M.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; Xiong, W. P.; Wen, M.; et al. Appl. Catal. B: Environ. 2018, 220, 202. doi: 10.1016/j.apcatb.2017.08.055
-
[4]
Marschall, R. Adv. Funct. Mater. 2014, 24, 2421. doi: 10.1002/adfm.201303214
-
[5]
Huang, D.; Chen, S.; Zeng, G.; Gong, X. M.; Zhou, C. Y.; Cheng, M.; Xue, W. J.; Yan, X. L.; Li, J. Coord. Chem. Rev. 2019, 385, 44. doi: 10.1016/j.ccr.2018.12.013
-
[6]
Xu, F. Y.; Xiao, W.; Cheng, B.; Yu, J. G. Int. J. Hydrog. Energy 2014, 39, 15394. doi: 10.1016/j.ijhydene.2014.07.166
-
[7]
Fang, B.; Bonakdarpour, A.; Reilly, K.; Xing, Y.; Taghipour, F.; Wilkinson, D. ACS Appl. Mater. Interfaces 2014, 6, 15488. doi: 10.1021/am504128t
-
[8]
Putri, L.; Ng, B. J.; Er, C. C.; Ong, W. J.; Chang, W. S.; Mohamed, A. R.; Chai, S. P. Appl. Surf. Sci. 2020, 504, 144427. doi: 10.1016/j.apsusc.2019.144427
-
[9]
Tang, J. Y.; Kong, X. Y.; Ng, B. J.; Chew, Y. H.; Mohamed, A.; Chai, S. P. Catal. Sci. Technol. 2019, 9, 2335. doi: 10.1039/C9CY00449A
-
[10]
Bard, A. J. Photochem. 1982, 327. doi: 10.1016/0047-2670(82)87022-6
-
[11]
Low, J. X.; Yu, J. G.; Jiang. C. J. Interface Sci. Technol. 2020, 31, 193. doi: 10.1016/B978-0-08-102890-2.00006-3
-
[12]
Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka. K. Nat. Mater. 2006, 5, 782. doi: 10.1038/nmat1734
-
[13]
Lu, Z. Y.; Yu, Z. H.; Dong, J. B.; Song, M. S.; Liu, Y.; Liu, X. L.; Ma, Z. F.; Su, H.; Yan, Y. S.; Huo. P. W. Chem. Eng. J. 2018, 337, 228. doi: 10.1016/j.cej.2017.12.115
-
[14]
Zhao, S.; Zhang, Y. W.; Zhou, Y. M.; Fang, J. S.; Wang, Y. Y.; Zhang, C.; Chen, W. X. J. Mater. Sci. 2018, 53, 6008. doi: 10.1007/s10853-018-1995-z
-
[15]
Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.; Yu, J. G.Small Methods 2017, 1, 1700080. doi: 10.1002/smtd.201700080
-
[16]
Jo, W.; Selvam. N. Chem. Eng. J. 2017, 317, 913. doi: 10.1016/j.cej.2017.02.129
-
[17]
Yu, J. G.; Wang, S. H.; Low, J. X.; Xiao, W. Phys. Chem. Chem. Phys. 2013, 15, 16883. doi: 10.1039/C3CP53131G
-
[18]
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109. doi: 10.1039/C8CS00542G
-
[19]
Wang, Q.; Domen, K. Chem. Rev. 2020, 120, 919. doi: 10.1021/acs.chemrev.9b00201
-
[20]
Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Chem. Rev. 2018, 118, 5201. doi: 10.1021/acs.chemrev.7b00286
-
[21]
Wang, J.; Wang, G. H.; Wei, X. H.; Liu, G.; Li, J. Appl. Surf. Sci. 2018, 456, 666. doi: 10.1016/j.apsusc.2018.06.182
-
[22]
Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Adv. Sci. 2016, 3, 1500389. doi: 10.1002/advs.201500389
-
[23]
Guo, L. J.; Wang, Y. J.; He, T. Chem. Rev. 2016, 16, 1918. doi: 10.1002/tcr.201600008
-
[24]
Zhang, G. J.; Su, A.; Qu, J. W.; Xu, Y. Mater. Res. Bull. 2014, 55, 43. doi: 10.1016/j.materresbull.2014.04.012
-
[25]
Ghadimkhani, G.; de Tacconi, N. R.; Chanmanee, W.; Janaky, C.; Rajeshwar. K. Chem. Commun. 2013, 49, 1297. doi: 10.1039/C2CC38068D
-
[26]
Truong, Q.; Liu, J.; Chung, C.; Ling, Y. Catal. Commun. 2012, 19, 85. doi: 10.1016/j.catcom.2011.12.025
-
[27]
Bessekhouad, Y.; Robert, D.; Weber, J. J. Photochem. Photobiol. A 2004, 163, 569. doi: 10.1016/j.jphotochem.2004.02.006
-
[28]
Liu, B. S.; Wu, H.; Parkin, I. ACS Omega 2020, 5, 14847. doi: 10.1021/acsomega.0c02145
-
[29]
Ng, B.; Putri, L.; Kong, X.; Teh, Y. W.; Pasbakhsh, P.; Chai, S. P. Adv. Sci. 2020, 7, 1903171. doi: 10.1002/advs.201903171
-
[30]
Zhou, L.; Boyd, C. E. Aquaculture 2016, 450, 187.doi: 10.1016/j.aquaculture.2015.07.022
-
[31]
Wu, N. Q.; Wang, J.; Tafen, D.; Wang, H.; Zheng, J. G.; Lewis, J.; Liu, X. G.; Leonard, S. S.; Manivannan, A. J. Am. Chem. Soc. 2010, 132, 6679. doi: 10.1021/ja909456f
-
[32]
Liu, G.; Niu, P.; Sun, C. H.; Smith, S.; Chen, Z. G.; Lu, G.; Cheng, H. M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k
-
[33]
Chen, X.; Li, N.; Kong, Z.; Ong, W. J.; Zhao, X. J. Mater. Horiz. 2018, 5, 9. doi: 10.1039/C7MH00557A
-
[34]
Bazhenova, T.; Shilov, A. Coord. Chem. Rev. 1995, 144, 69. doi: 10.1016/0010-8545(95)01139-G
-
[35]
Van der Ham, C.; Koper, M.; Hetterscheid, D. Chem. Soc. Rev. 2014, 43, 5183. doi: 10.1039/C4CS00085D
-
[36]
Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Appl. Catal. B: Environ. 2017, 200, 323. doi: 10.1016/j.apcatb.2016.07.025
-
[37]
Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. doi: 10.1038/277637a0
-
[38]
Zhang, L.; Zhao, Z. J.; Wang, T.; Gong, J. L. Chem. Soc. Rev. 2018, 47, 5423. doi: 10.1039/C8CS00016F
-
[39]
Maeda, K. Adv. Mater. 2019, 31, 1808205. doi: 10.1002/adma.201808205
-
[40]
Remiro-Buenamañana, S.; García, H. ChemCatChem 2019, 11, 342. doi: 10.1002/cctc.201801409
-
[41]
Ghoussoub, M.; Xia, M.; Duchesne, P.; Segal, D.; Ozin, G. Energy Environ. Sci. 2019, 12, 1122. doi: 10.1039/C8EE02790K
-
[42]
Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Angew. Chem. Int. Ed. 2018, 57, 7610. doi: 10.1002/anie.201710509
-
[43]
Xie, J. F.; Zhao, X. T.; Wu, M. X.; Li, Q. H.; Wang, Y.; Yao, J. B. Angew. Chem. Int. Ed. 2018, 130, 9788. doi: 10.1002/anie.201802055
-
[44]
Yang, H. P.; Wu, Y.; Lin, Q.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Angew. Chem. Int. Ed. 2018, 130, 15702. doi: 10.1002/anie.201809255
-
[45]
Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. doi: 10.1002/anie.201207199
-
[46]
Gao, X. M.; Shang, Y. Y.; Liu, L. B.; Fu, F. J. Catal. 2019, 371, 71. doi: 10.1016/j.jcat.2019.01.002
-
[47]
Li, J.; Niu, A. P.; Lu, C. J.; Zhang, J. H.; Junaid, M.; Strauss, P.; Xiao, P.; Wang, X.; Ren, Y. W.; Pei, D. S. Chemosphere 2017, 168, 112. doi: 10.1016/j.chemosphere.2016.10.048
-
[48]
Schlogl, R. Angew. Chem. Int. Ed. 2003, 42, 2004. doi: 10.1002/anie.200301553
-
[49]
Schrauzer, G. N.; Guth, T. D. J. Am. Chem. Soc. 1977, 99, 7189. doi: 10.1021/ja00464a015
-
[50]
Hoffman, B.; Lukoyanov, D.; Yang, Z.; Dean, D.; Seefeldt, L. Chem. Rev. 2014, 114, 4041. doi: 10.1021/cr400641x
-
[51]
Huang, Y. W.; Zhang, N.; Wu, Z. J.; Xie, X. Q. J. Mater. Chem. A 2020, 8, 4978. doi: 10.1039/C9TA13589H
-
[52]
Huang, D. L.; Tang, Z. H.; Peng, Z. W.; Lai, C.; Zeng, G. M.; Zhang, C.; Xu, P.; Cheng, M.; Wan, J.; Wang, R. Z. J. Taiwan Inst. Chem. E 2017, 77, 113. doi: 10.1016/j.jtice.2017.04.030
-
[53]
Acar, C.; Dincer, I.; Zamfirescu, C. Int. J. Energy Res. 2014, 38, 1903. doi: 10.1002/er.3211
-
[54]
Huang, D. L.; Wang, Y.; Zhang, C.; Zeng, G. M.; Lai, C.; Wan, J.; Qin, L.; Zeng, Y. L. RSC Adv. 2016, 6, 73186. doi: 10.1039/C6RA11850J
-
[55]
Chi, Z.; Chen, H.; Chen, Z.; Zhao, Q.; Chen, H.; Weng, Y. X. ACS Nano 2018, 12, 8961. doi: 10.1021/acsnano.8b02354
-
[56]
Li, K.; Peng, B. S.; Peng, T. Y. ACS Catal. 2016, 6, 7485. doi: 10.1021/acscatal.6b02089
-
[57]
Standard Test Methods for Ammonia Nitrogen in Water. ASTM D1426-15, Available online: https: //www.astm.org/Standards/D1426.htm (accessed on November 24, 2020).
-
[58]
Standard Test Method for Determination of Dissolved Alkali and Alkaline Earth Cations and Ammonium in Water and Wastewater by Ion Chromatography. ASTM D6919-09, Available online: https: //www.astm.org/DATABASE.CART/HISTORICAL/D6919-09.htm (accessed on November 24, 2020).
-
[59]
Dissolved Sodium, Ammonium, Potassium, Magnesium and Calcium in Wet Deposition by Chemically Suppressed Ion Chromatography. Method 300.7 EPA, Cincinnati, OH, US 1986.
-
[60]
Standard Method for the Examination of Water and Wastewater, 20th ed., APHA, Washington, DC, US 2005.
-
[61]
Crosby, N. T. Analyst 1968, 93, 406. doi: 10.1039/AN9689300406
-
[62]
Grasshoff, K.; Johannsen, H. ICES J. Mar. Sci. 1972, 34, 516. doi: 10.1093/icesjms/34.3.516
-
[63]
Gao, X.; Wen, Y. J.; Qu, D.; An, L.; Luan, S. L.; Jiang, W. S.; Zong, X. P.; Liu, X. Y.; Sun, Z. C. ACS Sustain. Chem. Eng. 2018, 6, 5342. doi: 10.1021/acssuschemeng.8b00110
-
[64]
Chen, R.; Yang, C. J.; Cai, W. Z.; Wang, H. Y.; Miao, J. W.; Zhang, L. P.; Chen, S. L.; Liu, B. ACS Energy Lett. 2017, 2, 1070. doi: 10.1021/acsenergylett.7b00219
-
[65]
Yuen, S.; Pollard, A. J. Sci. Food Agric. 1952, 3, 441. doi: 10.1002/jsfa.2740031002
-
[66]
Thompson, J.; Morrison, G. Anal. Chem. 1951, 23, 1153. doi: 10.1021/ac60056a029
-
[67]
Searle, P. Analyst 1984, 109, 549. doi: 10.1039/an9840900549
-
[68]
Michalski, R. Separations 2018, 5, 16. doi: 10.3390/separations5010016
-
[69]
Butt, S. B.; Riaz, M. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 1045. doi: 10.1080/10826070902841299
-
[70]
Zhu, M.; Sun, Z.; Fujitsuka, M.; Majima, T. Angew. Chem. Int. Ed. 2018, 57, 2160. doi: 10.1002/anie.201711357
-
[71]
Shinde, S.; Bhosale, C.; Rajpure, K. Catal. Rev. 2013, 55, 79. doi: 10.1080/01614940.2012.734202
-
[72]
Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Chem. Rev. 2015, 115, 13051. doi: 10.1021/cr500310b
-
[73]
Fu, Y. H.; Liang, W.; Guo, J. Q.; Tang, H.; Liu, S. S. Appl. Surf. Sci. 2018, 430, 234. doi: 10.1016/j.apsusc.2017.08.042
-
[74]
Bao, Y. C.; Chen, K. Z. Appl. Surf. Sci. 2018, 437, 51. doi: 10.1016/j.apsusc.2017.12.075
-
[75]
Chai, B.; Liu, C.; Yan, J.; Ren, Z.; Wang, Z. J. Appl. Surf. Sci. 2018, 448, 1. doi: 10.1016/j.apsusc.2018.04.116
-
[76]
Che, H. N.; Liu, C. B.; Hu, W.; Hu, H.; Li, J. Q.; Dou, J. Y.; Shi, W. D.; Li, C. M.; Dong, H. J. Catal. Sci. Technol. 2018, 8, 622. doi: 10.1039/C7CY01709J
-
[77]
Sun, M.; Wang, Y.; Shao, Y.; He, Y. H.; Zeng, Q.; Liang, H. K.; Yan, T.; Du, B. J. Colloid Interface Sci. 2017, 501, 123. doi: 10.1016/j.jcis.2017.04.047
-
[78]
Wu, Y.; Wang, H.; Tu, W. G.; Liu, Y.; Tan, Y. Z.; Yuan, X. Z.; Chew, J. W. J. Hazard Mater. 2018, 347, 412. doi: 10.1016/j.jhazmat.2018.01.025
-
[79]
Wu, Y.; Wang, H.; Tu, W. G.; Liu, Y.; Wu, S. Y.; Tan, Z. Y.; Chew, J. W. Appl. Catal. B: Environ. 2018, 233, 58. doi: 10.1016/j.apcatb.2018.03.105
-
[80]
Yang, Y.; Wu, J. J.; Xiao, T. T.; Tang, Z.; Shen, J. Y.; Li, H.; Zhou, Y.; Zou, Z. G. Appl. Catal. B: Environ. 2019, 255, 117771. doi: 10.1016/j.apcatb.2019.117771
-
[81]
Wang, S.; Zhu, B. C.; Liu, M. J.; Zhang, L. Y.; Yu, J. G.; Zhou, M. H. Appl. Catal. B: Environ. 2019, 243, 19. doi: 10.1016/j.apcatb.2018.10.019
-
[82]
Zhang, M.; Lu, M.; Lang, Z. L.; Liu, J.; Liu, M.; Chang, J. N.; Li, L. Y.; Shang, L. J.; Wang, M.; Li, S. L.; et al. Angew. Chem. Int. Ed. 2020, 132, 6562. doi: 10.1002/anie.202000929
-
[83]
Low, J. X.; Dai, B. Z.; Tong, T.; Jiang, C. J.; Yu, J. G. Adv. Mater. 2019, 31, 1802981. doi: 10.1002/adma.201802981
-
[84]
He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Sol. Energy Mater Sol. Cells 2015, 137, 175. doi: 10.1016/j.solmat.2015.01.037
-
[85]
Ma, X. G.; Chen, C.; Hu, J. S.; Zheng, M. K.; Wang, H. H.; Dong, S. J.; Huang, C. Y.; Chen, X. B. J. Alloy. Compd. 2019, 788, 1. doi: 10.1016/j.jallcom.2019.02.044
-
[86]
Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Appl. Catal. B: Environ. 2018, 224, 983. doi: 10.1016/j.apcatb.2017.11.025
-
[87]
Liu, J. J.; Cheng, B.; Yu, J. G. Phys. Chem. Chem. Phys. 2016, 18, 31175. doi: 10.1039/C6CP06147H
-
[88]
Xu, D. F.; Cheng, B.; Wang, W. K.; Jiang, C. J.; Yu, J. G. Appl. Catal. B: Environ. 2018, 231, 368. doi: 10.1016/j.apcatb.2018.03.036
-
[89]
Li, Z. W.; Hou, J. G.; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Nie, X. W.; Sun, L. C. Nano Energy 2019, 59, 537. doi: 10.1016/j.nanoen.2019.03.004
-
[90]
Opoku, F.; Govender, K.; van Sittert, C.; Govender, P. Appl. Surf. Sci. 2018, 427, 487. doi: 10.1016/j.apsusc.2017.09.019
-
[91]
Fu, C. F.; Zhang, R. Q.; Luo, Q. Q.; Li, X. X.; Yang, J. L. J. Comput. Chem. 2019, 40, 980. doi: 10.1002/jcc.25540
-
[92]
Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Nano Energy 2017, 40, 308. doi: 10.1016/j.nanoen.2017.08.032
-
[93]
Zhang, J. F.; Fu, J. W.; Wang, Z. L.; Cheng, B.; Dai, K.; Ho, W. K. J. Alloy. Compd. 2018, 766, 841. doi: 10.1016/j.jallcom.2018.07.041
-
[94]
Tong, T.; He, B.; Zhu, B. C.; Cheng, B.; Zhang, L. Y. Appl. Surf. Sci. 2018, 459, 385. doi: 10.1016/j.apsusc.2018.08.007
-
[95]
Huang, Z.; Sun, Q.; Lv, K.; Zhang, Z. H.; Li, M.; Li, B. Appl. Catal. B: Environ. 2015, 164, 420. doi: 10.1016/j.apcatb.2014.09.043
-
[96]
Yu, W. L.; Xu, D.; Peng, T. Y. J. Mater. Chem. A 2015, 3, 19936. doi: 10.1039/C5TA05503B
-
[97]
Yu, W. L.; Chen, J.; Shang, T.; Chen, L.; Gu, L.; Peng, T. Y. Appl. Catal. B: Environ. 2017, 219, 693. doi: 10.1016/j.apcatb.2017.08.018
-
[98]
Zhang, J. F.; Zhou, P.; Liu, J. J.; Yu, J. G. Phys. Chem. Chem. Phys. 2014, 16, 20382. doi: 10.1039/C4CP02201G
-
[99]
Rudenko, A.; Brener, S.; Katsnelson, M. Phys. Rev. Lett. 2016, 116, 246401. doi: 10.1103/PhysRevLett.116.246401
-
[100]
Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J.; Stranks, S.; Snaith, H.; Nicholas, R. Nat. Phys. 2015, 11, 582. doi: 10.1038/NPHYS3357
-
[101]
Wang, P.; Mao, Y.; Li, L.; Shen, Z.; Luo, X.; Wu, K.; An, P.; Wang, H.; Su, L.; Li, Y.; et al. Angew. Chem. Int. Ed. 2019, 58, 11329. doi: 10.1002/anie.201904571
-
[102]
Chen, J. F.; Hu, C.; Deng, Z.; Gong, X. P.; Su, Y.; Yang, Q.; Zhong, J. B.; Li, J. Z.; Duan, R. Chem. Phys. Lett. 2019, 716, 134. doi: 10.1016/j.cplett.2018.12.026
-
[103]
Maeda, K. ACS Catal. 2013, 3, 1486. doi: 10.1021/cs4002089
-
[104]
Xu, F. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. ACS Sustain. Chem. Eng. 2018, 6, 1229. doi: 10.1021/acssuschemeng.8b02710
-
[105]
Zhang, S.; Wang, J. M.; Chen, S. T.; Li, R. J.; Peng, T. Y. Ind. Eng. Chem. Res. 2019, 58, 14802. doi: 10.1021/acs.iecr.9b02335
-
[106]
Li, X. B.; Tung, C. H.; Wu, L. Z. Angew. Chem. Int. Ed. 2019, 58, 10804. doi: 10.1002/anie.201901267
-
[107]
Guo, H.; Du, H.; Jiang, Y.; Jiang, N.; Shen, C. C.; Zhou, X.; Liu, Y. N.; Xu, A. W. J. Phys. Chem. C 2017, 121, 107. doi: 10.1021/acs.jpcc.6b10013
-
[108]
Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
-
[109]
Zeng, C.; Hu, Y.; Zhang, T.; Dong, F.; Zhang, Y. H.; Huang, H. W. J. Mater. Chem. A 2018, 6, 16932. doi: 10.1039/C8TA04258F
-
[110]
Chao, Y.; Zhou, P.; Li, N.; Lai, J.; Yang, Y.; Zhang, Y. L.; Tang, Y. H.; Yang, W. X.; Du, Y. P.; Su, D.; et al. Adv. Mater. 2018, 31, 1807226. doi: 10.1002/adma.201807226
-
[111]
Cui, H. J.; Li, B. B.; Li, Z. Y.; Li, X. Z.; Xu, S. Appl. Surf. Sci. 2018, 455, 831. doi: 10.1016/j.apsusc.2018.06.054
-
[112]
Ma, K.; Yehezkeli, O.; Domaille, D.; Funke, H. H.; Cha, J. N. Angew. Chem. Int. Ed. 2015, 54, 11490. doi: 10.1002/anie.201504155
-
[113]
Yuan, Q.C.; Liu, D.; Zhang, N.; Ye, W.; Ju, H. X.; Shi, L.; Long, R.; Zhu, J. F.; Xiong, Y. J. Angew. Chem. Int. Ed. 2017, 15, 4206. doi: 10.1002/anie.201700150
-
[114]
Li, Y.; Li, L.; Gong, Y.; Bai, S.; Ju, H.; Wang, C.; Zhu, J. F.; Jiang, J.; Xiong, Y. J. Nano Res. 2015, 8, 3621. doi: 10.1007/s12274-015-0862-3
-
[115]
Zhao, H.; Wu, M.; Liu, J.; Deng, Z.; Deng, Z.; Li, Y.; Su, B. L. Appl. Catal. B: Environ. 2016, 184, 182. doi: 10.1016/j.apcatb.2015.11.018
-
[116]
Zhao, J.; Zhang, P.; Wang, Z.; Zhang, S.; Gao, H.; Hu, J. H.; Shao, G. S. Sci. Rep. 2017, 7, 16116. doi: 10.1038/s41598-017-12203-y
-
[117]
Tahira, M.; Sirajb, M.; Tahira, B.; Umera, M.; Alias, H.; Othman, N. Appl. Surf. Sci. 2020, 503, 144344. doi: 10.1016/j.apsusc.2019.144344
-
[118]
Liu, F.; Shi, R.; Wang, Z.; Weng, Y.; Che, C. M.; Chen, Y. Angew. Chem. Int. Ed. 2019, 131, 11917. doi: 10.1002/anie.201906416
-
[119]
Wang, Q.; Hisatomi, T.; Suzuki, Y.; Pan, Z. J.; Seo, J.; Katayama, M.; Minegishi, T.; Nishiyama, H.; Takata, T.; Seki, K.; et al. J. Am. Chem. Soc. 2017, 139, 1675. doi: 10.1021/jacs.6b12164
-
[120]
Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y.; Amal, R.; Kudo, A. J. Am. Chem. Soc. 2016, 138, 10260. doi: 10.1021/jacs.6b05304
-
[121]
Chen, S. S.; Qi, Y.; Hisatomi, T.; Ding, Q.; Asai, T.; Li, Z.; Ma, S. S. K.; Zhang, F. X.; Domen, K.; Li, C. Angew. Chem. Int. Ed. 2015, 54, 8498. doi: 10.1002/anie.201502686
-
[122]
Yuan, Y.; Chen, D.; Yang, S.; Yang, L.; Wang, J. J.; Cao, D. P.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. J. Mater. Chem. A 2017, 5, 21205. doi: 10.1039/C7TA06644A
-
[123]
Qi, Y.; Zhao, Y.; Gao, Y.; Li, D.; Li, Z.; Zhang, F. X.; Li, C. Joule2018, 2, 2393. doi: 10.1016/j.joule.2018.07.029
-
[124]
Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/NMAT4589
-
[125]
Wang, L.; Zheng, X.; Chen, L.; Xiong, Y.; Xu, H. Angew. Chem. Int. Ed. 2018, 57, 3454. doi: 10.1002/anie.201710557
-
[126]
Yang, G.; Ding, H.; Che, D. M.; Feng, J. J.; Hao, Q.; Zhu, Y. F. Appl. Catal. B: Environ. 2018, 234, 260. doi: 10.1016/j.apcatb.2018.04.038
-
[127]
Yoshino, S.; Iwase, A.; Ng, Y.; Amal, R.; Kudo, A. ACS Appl. Energy Mater. 2020, 3, 5684. doi: 10.1021/acsaem.0c00661
-
[128]
Li, P.; Zhou, Y.; Li, H. J.; Xu, Q. F.; Meng, X. G.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Chem. Commun. 2015, 51, 800. doi: 10.1039/c4cc08744e
-
[129]
Kuai, L.; Zhou, Y.; Tu, W.; Li, P.; Li, H. J.; Xu, Q. F.; Tang, L. Q.; Wang, X. Y.; Xiao, M.; Zou, Z. G. RSC Adv. 2015, 5, 88409. doi: 10.1039/C5RA14374H
-
[130]
Wang, J. C.; Zhang, L.; Fang, W. X.; Ren, J.; Li, Y. Y.; Yao, H. C.; Wang, J. S.; Li, Z. J. ACS Appl. Mater. Interfaces. 2015, 7, 8631. doi: 10.1021/acsami.5b00822
-
[131]
Wang, Y.; Zhang, Z. Z.; Zhang, L. N.; Luo, Z. B.; Shen, J. N.; Lin, H. L.; Long, J.; Wu, J. C. S.; Fu, X. Z.; Wang, X. X; et al. J. Am. Chem. Soc. 2018, 140, 14595. doi: 10.1021/jacs.8b09344
-
[132]
Shi, W.; Guo, X.; Cui, C.; Jiang, K.; Li, Z. J.; Qu, L. B.; Wang, J. C. Appl. Catal. B: Environ. 2019, 243, 236. doi: 10.1016/j.apcatb.2018.09.076
-
[133]
Li, H. J.; Gao, Y. Y.; Zhou, Y.; Fan, F. T.; Han, Q. T.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Li, C.; Zou, Z. G. Nano Lett. 2016, 16, 5547. doi: 10.1021/acs.nanolett.6b02094
-
[134]
Kim, C.; Cho, K. M.; Al-Saggaf, A.; Gereige, I.; Jung, H. ACS Catal. 2018, 8, 4170. doi: 10.1021/acscatal.7b03884
-
[135]
Raza, A.; Shen, H.; Haidry, A.; Sun, L.; Liu, R.; Cui, S. J. CO2 Util. 2020, 37, 260. doi: 10.1016/j.jcou.2019.12.020
-
[136]
Zhou, R.; Wei, Z.; Li, Y.; Li, Z.; Yao, H. C. J. Mater. Res. 2019, 34, 3907. doi: 10.1557/jmr.2019.354
-
[137]
Yanga, G.; Chena, D.; Ding, H.; Feng, J. J.; Zhang, J.; Zhu, Y. F.; Hamid, S.; Bahnemann, D. Appl. Catal. B: Environ. 2017, 219, 611. doi: 10.1016/j.apcatb.2017.08.016
-
[138]
Aguirre, M.; Zhou, R.; Eugene, A.; Guzman, M.; Grela, M. Appl. Catal. B: Environ. 2017, 217, 485. doi: 10.1016/j.apcatb.2017.05.058
-
[139]
Rong, X.; Chen, H.; Rong, J.; Zhang, X. Y.; Wei, J.; Liu, S.; Zhou, X. T.; Xu, J. C.; Qiu, F. X.; Wu, Z. R. Chem. Eng. J. 2019, 371, 286. doi: 10.1016/j.cej.2019.04.052
-
[140]
Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A.; Jaroniec, M. Mater. Today 2018, 21, 1042. doi: 10.1016/j.mattod.2018.04.008
-
[141]
Di, T. M.; Xu, Q. L.; Ho, W. K.; Tang, H.; Xiang, Q. J.; Yu, J. G.ChemCatChem 2019, 11, 1394. doi: 10.1002/cctc.201802024
-
[142]
Xu, F. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. ACS Sustain. Chem. Eng. 2018, 6, 12291. doi: 10.1021/acssuschemeng.8b02710
-
[143]
Meng, A. Y.; Zhu, B. C.; Zhong, B.; Zhang, L. Y.; Cheng, B. Appl. Surf. Sci. 2017, 422, 518. doi: 10.1016/j.apsusc.2017.06.028
-
[144]
Jin, J.; Yu, J. G.; Guo, D. P.; Cui, C.; Ho, W. K. Small 2015, 11, 5262. doi: 10.1002/smll.201500926
-
[145]
曹丹, 安华, 严孝清, 赵宇鑫, 杨贵东, 梅辉.物理化学学报, 2020, 36, 1901051.doi: 10.3866/PKU.WHXB201901051Cao, D.; An, H.; Yan, X. Q.; Zhao, Y. X.; Yang, G. D.; Mei, H. Acta Phys. -Chim. Sin. 2020, 36, 1901051. doi: 10.3866/PKU.WHXB201901051
-
[146]
Xu, D. F.; Cheng, B.; Cao, S. W.; Yu, J. G. Appl. Catal. B: Environ. 2015, 164, 380. doi: 10.1016/j.apcatb.2014.09.051
-
[147]
Zhou, P.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/adma.201400288
-
[148]
Jiang, T. G.; Wang, K.; Guo, T.; Wu, X. Y.; Zhang, G. K. Chin. J. Catal. 2020, 41, 161. doi: 10.1016/S1872-2067(19)63391-7
-
[149]
Li, Z.; Wang, X.; Zhang, J. F.; Liang, C. H.; Lu, L. H.; Dai, K. Chin. J. Catal. 2019, 40, 326. doi: 10.1016/S1872-2067(18)63165-1
-
[150]
Wang, J. M.; Kuo, M. D.; Zeng, P.; Xu, L.; Chen, S. T.; Peng, T. Y. Appl. Catal. B: Environ. 2020, 279, 119377. doi: 10.1016/j.apcatb.2020.119377
-
[151]
Zhang, S.; Chen, S. T.; Liu, D.; Zhang, J.; Peng, T. Y. Appl. Surf. Sci. 2020, 529, 147013. doi: 10.1016/j.apsusc.2020.147013
-
[152]
Muraoka, K.; Uchiyama, T.; Lu, D.; Uchimoto, Y.; Ishitani, O.; Maeda, K. Bull. Chem. Soc. Jpn. 2019, 92, 124. doi: 10.1246/bcsj.20180239
-
[153]
Nie, N.; He, F.; Zhang, L. Y.; Cheng, B. Appl. Surf. Sci. 2018, 457, 1096. doi: 10.1016/j.apsusc.2018.07.002
-
[154]
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J
-
[155]
Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/B800489G
-
[156]
Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Angew. Chem. Int. Ed. 2012, 51, 2395. doi: 10.1002/anie.201107681
-
[157]
Polleux, J.; Pinna, N.; Antonietti, M.; Niederberger, M. J. Am. Chem. Soc. 2005, 127, 15595. doi: 10.1021/ja0544915
-
[158]
Kailasam, K.; Fischer, A.; Zhang, G.; Zhang, J.; Schwarze, M.; Schrçder, M.; Wang, X. C.; Schomäcker, R.; Thomas, A. ChemSusChem 2015, 8, 1404. doi: 10.1002/cssc.201403278
-
[159]
Chen, S. F.; Hu, Y. F.; Jiang, X. L.; Meng, S. G.; Fu, X. L. Mater. Chem. Phys. 2015, 149. 512. doi: 10.1016/j.matchemphys.2014.11.001
-
[160]
Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2015, 27, 2150. doi: 10.1002/adma.201500033
-
[161]
Zhang, Z. Y.; Huang, J. D.; Fang, Y. R.; Zhang, M. Y.; Liu, K. C.; Dong, B. Adv. Mater. 2017, 29, 1606688. doi: 10.1002/adma.201606688
-
[162]
Wang, X.; Liow, C.; Bisht, A.; Liu, X.; Sum, T. C.; Chen, X. S; Li, S. Z. Adv. Mater. 2015, 27, 2207. doi: 10.1002/adma.201405674
-
[163]
Zhang, Z. Y.; Liu, K. C.; Feng, Z. Q.; Bao, Y. N.; Dong, B. Sci. Rep. 2016, 6, 19221. doi: 10.1038/srep19221
-
[164]
Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomacker, R.; Thomas, A.; Schmidt, J. J. Am. Chem. Soc. 2018, 140, 1423. doi: 10.1021/jacs.7b11255
-
[165]
Jin, E.; Lan, Z.; Jiang, Q.; Geng, K.; Li, G.; Wang, X.; Jiang, D. Chem 2019, 5, 1632. doi: 10.1039/C9TA12870K
-
[166]
Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2017, 139, 16228. doi: 10.1021/jacs.7b07489
-
[167]
Dong, Z.; Wu, Y.; Thirugnanam, N.; Li, G. Appl. Surf. Sci. 2018, 430, 293. doi: 10.1016/j.apsusc.2017.07.186
-
[168]
Kong, L. N.; Zhang, X. T.; Wang, C. H.; Xu, J. P.; Du, X. W.; Li, L. Appl. Surf. Sci. 2018, 448, 288. doi: 10.1016/j.apsusc.2018.04.011
-
[169]
Qin, Z.; Fang, W. J.; Liu, J. Y.; Wei, Z.; Jiang, Z.; Shangguan, W. F. Chin. J. Catal. 2018, 39, 472. doi: 10.1016/S1872-2067(17)62961-9
-
[170]
Hagiwara, H.; Watanabe, M.; Ida, S.; Ishihara, T. J. Jpn. Pet. Inst. 2017, 60, 10. doi: 10.1627/jpi.60.10
-
[171]
Bai, Y.; Nakagawa, K.; Cowan, A.; Aitchison, C.; Yamaguchi, Y.; Zwijnenburg, M.; Kudo, A.; Sprick, R.; Cooper, A. I. J. Mater. Chem. A 2020, 8, 16283. doi: 10.1039/D0TA04754F
-
[172]
Kuehnel, M.; Orchard, K.; Dalle, K.; Reisner, E. J. Am. Chem. Soc. 2017, 139, 7217. doi: 10.1021/jacs.7b00369
-
[173]
Ryu, A. Chem. Soc. Jpn. 2011, 84, 1000. doi: 10.1246/bcsj.20110132
-
[174]
Suzuki, T.; Yoshino, S.; Takayama, T.; Iwase, A.; Kudo, A.; Morikawa, T. Chem. Commun. 2018, 54, 10199. doi: 10.1039/C8CC05505J
-
[175]
Liao, M.; Scheiner, S. J. Chem. Phys. 2002, 117, 205. doi: 10.1063/1.1480872
-
[176]
Dong, Y.; Li, J.; Shi, L.; Guo, Z. G. ACS Appl. Mater. Interfaces 2015, 7, 15403. doi: 10.1021/acsami.5b03486
-
[177]
Choi, S.; Yang, H.; Kim, J.; Park, H. Appl. Catal. B: Environ. 2012, 121, 206. doi: 10.1016/j.apcatb.2012.04.011
-
[178]
Zhang, N.; Yang, M. Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y. J. Chem. Rev. 2015, 115, 10307. doi: 10.1021/acs.chemrev.5b00267
-
[179]
Wibmer, L.; Lourenco, L.; Roth, A.; Katsukis, G.; Neves, M.; Cavaleiro, J.; Torres, T.; Guldi, D. Nanoscale 2015, 7, 5674. doi: 10.1039/C4NR05719H
-
[180]
Bai, Y.; Ye, L.; Wang, L.; Shi, X.; Wang, P.; Bai, W.; Wong, P. K. Appl. Catal. B: Environ. 2016, 194, 98. doi: 10.1016/j.apcatb.2016.04.052
-
[181]
Meng, J. C.; Chen, Q.; Lu, J. Q.; Liu, H. ACS Appl. Mater. Interfaces 2019, 11, 550. doi: 10.1021/acsami.8b14282
-
[182]
Wang, L.; Jin, P.; Huang, J.; She, H.; Wang, Q. ACS Sustain. Chem. Eng. 2019, 7, 15660. doi: 10.1021/acssuschemeng.7b01970
-
[183]
Bian, J.; Feng, J. N.; Zhang, Z. Q.; Sun, J. W.; Chu, M. N.; Sun, L.; Li, X.; Tang, D. Y.; Jing, L. Q. Chem. Commun. 2020, 56, 4926. doi: 10.1039/D0CC01518K
-
[184]
Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7
-
[185]
He, Y. M.; Zhang, L. H.; Teng, B. T.; Fan, M. H. Environ. Sci. Technol. 2015, 49, 649. doi: 10.1021/es5046309
-
[186]
Bai, Y.; Chen, T.; Wang, P. Q.; Wang, L.; Ye, L. Q; Shi, X.; Bai, W. Sol. Energy Mater. Sol. Cells 2016, 157, 406. doi: 10.1016/j.solmat.2016.07.001
-
[187]
Wu, J.; Feng, Y. J.; Bruce, L.; Dai, C. C.; Han, X. Y.; Li, D.; Liu, J. ACS Sustain. Chem. Eng. 2019, 7, 15289. doi: 10.1021/acssuschemeng.9b02489
-
[188]
Jing, X.; He, C.; Yang, Y.; Duan, C. Y. J. Am. Chem. Soc. 2015, 137, 3967. doi: 10.1021/jacs.5b00832
-
[189]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051
-
[190]
Li, X.; Kikugawa, N.; Ye, J. Adv. Mater. 2008, 20, 3816. doi: 10.1002/adma.200702975
-
[191]
Oshima, T.; Nishioka, S.; Kikuchi, Y.; Hirai, S.; Yanagisawa, K.; Eguchi, M.; Miseki, Y.; Yokoi, T.; Yui, T.; Kimoto, K.; et al. J. Am. Chem. Soc. 2020, 142, 8412. doi: 10.1021/jacs.0c02053
-
[192]
Gerischer, H. Photochem. Photobiol. 1972, 16, 243. doi: 10.1111/j.1751-1097.1972.tb06296.x
-
[193]
Bae, E.; Choi, W.; Park, J.; Shin, H.; Kim, S.; Lee, J. J. Phys. Chem. B 2004, 108, 14093. doi: 10.1021/jp047777p
-
[194]
Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911. doi: 10.1038/NMAT3151
-
[195]
Tatsuma, T.; Nishi, H.; Ishida, T. Chem. Sci. 2017, 8, 3325. doi: 10.1039/C7SC00031F
-
[196]
Zhou, H.; Long, J.; Yaghi, O. Chem. Rev. 2017, 112, 673. doi: 10.1021/cr300014x
-
[197]
Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Nature 2016, 529, 68. doi: 10.1038/nature16455
-
[198]
Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Chem. Soc. Rev. 2017, 46, 2799. doi: 10.1039/C6CS00727A
-
[199]
Luo, B.; Liu, G.; Wang, L. Z. Nanoscale 2016, 8, 6904. doi: 10.1039/C6NR00546B
-
[200]
She, X.; Wu, J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y. H.; Nie, K. Q.; Liu, Y.; Yang, Y. C.; Rodrigues, M.; et al. Adv. Energy Mater. 2017, 7, 1700025. doi: 10.1002/aenm.201700025
-
[201]
Chiarello, G.; Dozzi, M.; Scavini, M.; Grunwaldt, J.; Selli, E. Appl. Catal. B: Environ. 2014, 160/161, 144. doi: 10.1016/j.apcatb.2014.05.006
-
[202]
Ye, S.; Ding, C. M.; Liu, M. Y.; Wang, A. Q.; Huang, Q. G.; Li, C.Adv. Mater. 2019, 31, 1902069. doi: 10.1002/adma.201902069
-
[203]
Luo, W. J.; Jiang, C. R.; Li, Y. M.; Shevlin, S.; Han, X. Y.; Qiu, K. P.; Cheng, Y. C.; Guo, Z. X.; Huang, W.; Tang, J. W. J. Mater. Chem. A 2017, 5, 2021. doi: 10.1039/C6TA08719A
-
[204]
Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e
-
[205]
Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Angew. Chem. Int. Ed. 2006, 45, 7806. doi: 10.1002/anie.200602473
-
[206]
Yoshida, M.; Takanabe, K.; Maeda, K.; Ishikawa, A.; Kubota, J.; Sakata, Y.; Ikezawa, Y.; Domen, K. J. Phys. Chem. C 2009, 113, 10151. doi: 10.1021/jp901418u
-
[207]
Zhu, M. S.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J. Y.; Wang, X. C.; Majima, T. J. Am. Chem. Soc. 2017, 139, 13234. doi: 10.1021/jacs.7b08416
-
[208]
Zhu, M.; Zhai, C.; Fujitsuka, M.; Majima, T. Appl. Catal. B: Environ. 2018, 221, 645. doi: 10.1016/j.apcatb.2017.09.063
-
[209]
Martin, D.; Reardon, P.; Moniz, S.; Tang, J. J. Am. Chem. Soc. 2014, 136, 12568. doi: 10.1021/ja506386e
-
[210]
Nie, Z. H.; Wang, Y. H.; Li, Z. L.; Sun, Y.; Qin, S. C.; Liu, X. P.; Turcu, I. C. E.; Shi, Y.; Zhang, R.; Ye, Y.; et al. Nanoscale Horiz. 2019, 4, 1099. doi: 10.1039/c9nh00045c
-
[211]
Du, Y.; Wang, Z.; Chen, H.; Wang, H. Y.; Liu, G.; Weng, Y. Phys. Chem. Chem. Phys. 2019, 21, 4349. doi: 10.1039/C8CP06109B
-
[212]
Zhu, M.; Sun, Z.; Fujitsuka, M.; Majima, T. Angew. Chem. Int. Ed. 2018, 130, 2182. doi: 10.1002/anie.201711357
-
[213]
Sun, D.; Jang, S.; Yim, S. J.; Ye, L.; Kim, D. P. Adv. Funct. Mater. 2018, 28, 1707110. doi: 10.1002/adfm.201707110
-
[214]
Liu, M.; Qiao, L. Z.; Dong, B. B.; Guo, S.; Yao, S.; Chao, L.; Zhang, Z. M.; Lu, T. B. Appl. Catal. B: Environ. 2020, 273, 119066. doi: 10.1016/j.apcatb.2020.119066
-
[215]
Xu, F. Y.; Zhang, J. J.; Zhu, B. C.; Yu, J. G.; Xu, J. S. Appl. Catal. B: Environ. 2018, 230, 194. doi: 10.1016/j.apcatb.2018.02.042
-
[216]
Qi, K. Z.; Cheng, B.; Yu, J. G.; Ho, W. Chin. J. Catal. 2017, 38, 1936. doi: 10.1016/S1872-2067(17)62962-0
-
[217]
Zeng, D.; Zhou, T.; Ong, W.; Wu, M.; Duan, X.; Xu, W.; Chen, Y.; Zhu, Y.; Peng, D. ACS Appl. Mater. Interfaces 2019, 11, 5651. doi: 10.1021/acsami.5b10785
-
[218]
Wan, Y.; Wang, L.; Xu, H.; Wu, X. J.; Yang, J. L. J. Am. Chem. Soc. 2020, 142, 4508. doi: 10.1021/jacs.0c00564
-
[219]
Liu, Y.; Cui, J.; Liang, Y.; An, W. J.; Wang, H.; Liu, L.; Hu, J. S.; Cui, W. Q. Appl. Surf. Sci. 2020, 509, 145296. doi: 10.1016/j.apsusc.2020.145296
-
[220]
Zhou, G.; Wu, M. F.; Xing, Q. J.; Li, F.; Liu, H.; Luo, X. B.; Zou, J. P.; Luo, J. M.; Zhang, A. Q. Appl. Catal. B: Environ. 2018, 220, 607. doi: 10.1016/j.apcatb.2017.08.086
-
[221]
Zhang, X. H.; Peng, T. Y.; Song, S. S. J. Mater. Chem. A 2016, 4, 2365. doi: 10.1039/C5TA08939E
-
[222]
Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.; Gratzel, M. Nat. Chem. 2014, 6, 242. doi: 10.1038/NCHEM.1861
-
[223]
Adán, C.; Magnet, A.; Fenoy, S.; Pablos, C.; del Águila, C.; Marugán, J. Water Res. 2018, 144, 512. doi: 10.1016/j.watres.2018.07.060
-
[224]
Montes, V.; Pérez-Bolívar, C.; Agarwal, N.; Shinar, J.; Anzenbacher, P. J. Am. Chem. Soc. 2006, 128, 12436. doi: 10.1021/ja064471i
-
[225]
Gu, C.; Huang, N.; Chen, Y. C.; Zhang, H. H.; Zhang, S. T.; Li, F. H.; Ma, Y. G.; Jiang, D. L. Angew. Chem. Int. Ed. 2016, 128, 3101. doi: 10.1002/anie.201510723
-
[226]
Wang, Z.; Ghasimi, S.; Landfester, K.; Zhang, K. Adv. Mater. 2015, 27, 6265. doi: 10.1002/adma.201502735
-
[227]
Zhang, Y. P.; Tang, H. L.; Dong, H.; Gao, M. Y.; Li, C. C.; Sun, X.; Wei, J.; Qu, Y.; Li, Z.; Zhang, F. M. J. Mater. Chem. A 2020, 8, 4334. doi: 10.1039/C9TA12870K
-
[228]
Erbs, W.; Desilvestro, J.; Borgarello, E.; Graetzel, M. J. Phys. Chem. 1984, 88, 4001. doi: 10.1021/j150662a028
-
[229]
Lou, Z. Z.; Gu, Q.; Xu, L.; Liao, Y. S.; Xue, C. Chem. Asian J. 2015, 10, 1291. doi: 10.1002/asia.201500319
-
[230]
Yan, J. Q.; Wang, T.; Wu, G. J.; Dai, W. L.; Guan, N. J.; Li, L. D.; Gong, J. L. Adv. Mater. 2015, 27, 1580. doi: 10.1002/adma.201404792
-
[231]
Liu, J.; Margeat, O.; Dachraoui, W.; Liu, X.; Fahlman, M.; Ackermann, J. Adv. Funct. Mater. 2014, 24, 6029. doi: 10.1002/adfm.201401261
-
[232]
Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X. Y.; Sun, Z. C. Appl. Catal. B: Environ. 2019, 240, 253. doi: 10.1016/j.apcatb.2018.09.010
-
[233]
Jo, W.; Kumar, S.; Eslava, S.; Tonda, S. Appl. Catal. B: Environ. 2018, 239, 586. doi: 10.1016/j.apcatb.2018.08.056
-
[234]
Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 17310. doi: 10.1021/ja4103293
-
[235]
Zhou, L.; Kamyab, H.; Surendar, A.; Maseleno, A.; Ibatova, A. Z.; Chelliapan, S.; Karachi, N.; Parsaee, Z. J. Photochem. Photobiol. A-Chem. 2019, 368, 30. doi: 10.1016/j.jphotochem.2018.09.006
-
[236]
Ong, W.; Tan, L.; Ng, Y.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075
-
[237]
Di, T.; Zhu, B.; Cheng, B.; Yu, J. G.; Xu, J. S. J. Catal. 2017, 352, 532. doi: 10.1016/j.jcat.2017.06.006
-
[238]
Hoffman, B.; Dean, D.; Seefeldt, L. Acc. Chem. Res. 2009, 42, 609. doi: 10.1021/ar8002128
-
[239]
Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389. doi: 10.1021/bi00168a001
-
[240]
Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C.; King, P. W. Science 2016, 352, 448. doi: 10.1126/science.aaf2091
-
[241]
Wang, Y. J.; Wei, W. S.; Li, M. Y.; Hu, S. Z.; Zhang, J.; Feng, R. J. RSC Adv. 2017, 7, 18099. doi: 10.1039/C7RA00097A
-
[242]
Cao, S. H.; Zhou, N.; Gao, F. H.; Chen, H.; Jiang, F. Appl. Catal. B: Environ. 2017, 218, 600. doi: 10.1016/j.apcatb.2017.07.013
-
[243]
Feng, X. W.; Chen, H.; Jiang, F.; Wang, X. Catal. Sci. Technol.2019, 9, 2849. doi: 10.1039/C9CY00281B
-
[244]
Yu, L. M.; Mo, Z.; Zhu, X. L.; Deng, J. J.; Xu, F.; Song, Y. H.; She, Y. B.; Li, H. M.; Xu, H. Green Energy Environ. 2020, doi: 10.1016/j.gee.2020.05.011
-
[245]
Liang, H. Y.; Zou, H.; Hu, S. Z. New J. Chem. 2017, 41, 8920. doi: 10.1039/C7NJ01848G
-
[246]
Zhao, X.; You, Y.; Huang, S.; Wu, Y. X.; Ma, Y. Y.; Zhang, G.; Zhang, Z. H. Appl. Catal. B: Environ. 2020, 278, 119251. doi: 10.1016/j.apcatb.2020.119251
-
[247]
Ding, L.; Zhou, H.; Lou, S.; Ding, J.; Zhang, D.; Zhu, H. X.; Fan, T. X. Int. J. Hydrog. Energy 2013, 38, 8244. doi: 10.1016/j.ijhydene.2013.04.093
-
[248]
Li, Y. F.; Zhou, M. H.; Cheng, B.; Yan, S. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028
-
[249]
潘金波, 申升, 周威, 唐杰, 丁洪志, 王进博, 陈浪, 区泽堂, 尹双凤.物理化学学报, 2020, 36, 1905068. doi: 10.3866/PKU.WHXB201905068Pan, J. B; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068. doi: 10.3866/PKU.WHXB201905068
-
[250]
Nie, N.; Zhang, L. Y.; Fu, J. W.; Cheng, B.; Yu, J. G. Appl. Surf. Sci. 2018, 441, 12. doi: 10.1016/j.apsusc.2018.01.193
-
[251]
Xia, P. F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Xu, J. S. ACS Sustain. Chem. Eng. 2018, 6, 965. doi: 10.1021/acssuschemeng.7b03289
-
[252]
Zhu, B. C.; Xia, P. F.; Li, Y.; Ho, W.; Yu, J. G. Appl. Surf. Sci. 2017, 391, 175. doi: 10.1016/j.apsusc.2016.07.104
-
[253]
Li, X. B.; Xiong, J.; Xu, Y.; Feng, Z. J.; Huang, J. T. Chin. J. Catal. 2019, 40, 424. doi: 10.1016/S1872-2067(18)63183-3
-
[254]
Hu, L. M.; Yan, J. T.; Wang, C. L.; Chai, B.; Li, J. F. Chin. J. Catal. 2019, 40, 458. doi: 10.1016/S1872-2067(18)63181-X
-
[255]
Fang, M. M.; Shao, J. X.; Huang, X. G.; Wang, J. Y. J. Mater. Sci. Technol. 2020, 56, 133. doi: 10.1016/j.jmst.2020.01.054
-
[256]
Yu, W. L.; Zhang, S.; Chen, J. X.; Xia, P. F.; Richter, M.; Chen, L. F.; Xu, W.; Jin, J. P.; Chen, S. L.; Peng, T. Y. J. Mater. Chem. A 2018, 6, 15668. doi: 10.1039/C8TA02922A
-
[257]
Yuan, J. L.; Wen, J. Q.; Zhong, Y. M.; Li, X.; Fang, Y. P.; Zhang, S. S.; Liu, W. J. Mater. Chem. A 2015, 3, 18244. doi: 10.1039/C5TA04573H
-
[258]
Liu, D.; Zhang, S.; Wang, J.; Peng, T. Y.; Li, R. J. ACS Appl. Mater. Interfaces 2019, 11, 27913. doi: 10.1021/acsami.9b08329
-
[259]
Dong, J.; Shi, Y.; Huang, C. P.; Wu, Q.; Zeng, T.; Yao, W. F. Appl. Catal. B: Environ. 2019, 243, 27. doi: 10.1016/j.apcatb.2018.10.016
-
[260]
Liu, Y. J.; Liu, H. X.; Zhou, H. M.; Li, T.; Zhang, L. N. Appl. Surf. Sci. 2019, 466, 133. doi: 10.1016/j.apsusc.2018.10.027
-
[261]
Zhao, Y. S.; Fu, H. B.; Peng, A. D.; Ma, Y.; Liao, Q.; Yao, J. N. Acc. Chem. Res. 2010, 43, 409. doi: 10.1021/ar900219n
-
[262]
Fu, J. W.; Yu, J. G.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2017, 8, 1701503. doi: 10.1002/aenm.201701503
-
[263]
Liess, A.; Stolte, M.; He, T.; Würthner, F. Dye. Mater. Horiz. 2016, 3, 72. doi: 10.1039/C5MH00167F
-
[264]
Ren, Y.; Sun, D.; Cao, Y.; Tsao, H.; Yuan, Y.; Zakeeruddin, S.; Wang, P.; Gratzel, M. J. Am. Chem. Soc. 2018, 140, 2405. doi: 10.1021/jacs.7b12348
-
[265]
Gsanger, M.; Bialas, D.; Huang, L.; Stolte, M.; Würthner, F. Adv. Mater. 2016, 28, 3615. doi: 10.1002/adma.201505440
-
[266]
Li, H. H.; Jie, L. L.; Pan, J.N.; Kang, L. T.; Yao, J. N. J. Mater. Chem. A 2016, 4, 6577. doi: 10.1039/C6TA01582D
-
[267]
Liu, L. J.; Lai, Y. D.; Li, H. H.; Kang, L. T.; Liu, J. J.; Cao, Z. M.; Yao, J. N. J. Mater. Chem. A 2017, 5, 8029. doi: 10.1039/C7TA00580F
-
[268]
Niishiro, R.; Kato, H.; Kudo, A. Phys. Chem. Chem. Phys. 2005, 7, 2241. doi: 10.1039/B502147B
-
[269]
Sakata, Y.; Matsuda, Y.; Yanagida, T.; Hirata, K.; Imamura, H.; Teramura, K. Catal. Lett. 2008, 125, 22. doi: 10.1007/s10562-008-9557-7
-
[270]
Yashima, M.; Lee, Y.; Domen, K. Chem. Mater. 2007, 19, 588. doi: 10.1021/cm062586f
-
[271]
Liu, Q. X.; Zeng, C. M.; Ai, L. H.; Hao, Z.; Jiang, J. Appl. Catal. B: Environ. 2018, 224, 38. doi: 10.1016/j.apcatb.2017.10.029
-
[272]
潘志明, 刘明辉, 牛萍萍, 郭芳松, 付贤智, 王心晨.物理化学学报, 2020, 36, 1906014. doi: 10.3866/PKU.WHXB201906014Pan, Z. M.; Liu, M. H.; Niu, P. P.; Guo, F. S.; Fu, X. Z.; Wang, X. C. Acta Phys. -Chim. Sin. 2020, 36, 1906014. doi: 10.3866/PKU.WHXB201906014
-
[273]
Ran, J.; Jaroniec, M.; Qiao, S. Adv. Mater. 2018, 30, 1704649. doi: 10.1002/adma.201704649
-
[274]
Xu, Q. L.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; Yu, J. G. Solar RRL. 2018, 2, 1800006. doi: 10.1002/solr.201800006
-
[275]
Nakada, A.; Kuriki, R.; Sekizawa, K.; Nishioka, S.; Vequizo, J.; Uchiyama, T.; Kawakami, N.; Lu, D. L.; Yamakata, A.; Uchimoto, Y.; et al. ACS Catal. 2018, 8, 9744. doi: 10.1021/acscatal.8b03062
-
[276]
Wu, M.; Li, L.; Liu, N.; Wang, D. J.; Xue, Y. C.; Tang, L. Process Safety Environ. Protect. 2018, 118, 40. doi: 10.1016/j.psep.2018.06.025
-
[277]
Shen, R. C.; Zhang, L. P.; Chen, X. Z.; Jaroniec, M.; Li, N.; Li, X. Appl. Catal. B: Environ. 2020, 266, 118619. doi: 10.1016/j.apcatb.2020.118619
-
[278]
Shen, Z.; Yuan, Y.; Wang, P.; Bai, W. F.; Pei, L.; Wu, S. T.; Yu, Z. T.; Zou, Z. G. ACS Appl. Mater. Interfaces 2020, 12, 17343. doi: 10.1021/acsami.9b21167
-
[279]
Miseki, Y.; Sayama, K. RSC Adv. 2014, 4, 8308. doi: 10.1039/C3RA47772J
-
[280]
Miseki, Y.; Sayama, K. Catal. Sci. Technol. 2019, 9, 2019. doi: 10.1039/C9CY00100J
-
[281]
Zhang, X.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G.; Shankar, K. Angew. Chem. Int. Ed. 2012, 51, 12732. doi: 10.1002/anie.201205619
-
[282]
Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G. J. Energy Chem. 2020, 51, 253. doi: 10.1016/j.jechem.2020.03.085
-
[283]
Gao, D. D.; Yuan, R. R.; Fan, J. J.; Hong, X. K.; Yu, H. G. J. Mater. Sci. Technol. 2020, 56, 122. doi: 10.1016/j.jmst.2020.02.031
-
[284]
王梁, 朱澄鹭, 殷丽莎, 黄维.物理化学学报, 2020, 36, 1907001. doi: 10.3866/PKU.WHXB201907001Wang, L.; Zhu, C. G.; Yin, L. S.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001. doi: 10.3866/PKU.WHXB201907001
-
[285]
Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133, 20863. doi: 10.1021/ja207586e
-
[286]
Xie, S. J.; Wang, Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. ACS Catal. 2014, 4, 3644. doi: 10.1021/cs500648p
-
[287]
Lin, H. Y.; Yang, H. C.; Wang, W. L. Catal. Today 2011, 174, 106. doi: 10.1016/j.cattod.2011.01.052
-
[288]
Zhang, Z. Y.; Wang, Z.; Cao, S. W.; Xue, C. J. Phys. Chem. C 2013, 117, 25939. doi: 10.1021/jp409311x
-
[289]
Wang, W.; An, W.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D.; Gangopadhyay, S.; Biswas, P. J. Am. Chem. Soc. 2012, 134, 11276. doi: 10.1021/ja304075b
-
[290]
Kang, Q.; Wang, T.; Li, P.; Liu, L. Q.; Chang, K.; Li, M.; Ye, J. H. Angew. Chem. Int. Ed. 2015, 54, 841. doi: 10.1002/anie.201409183
-
[291]
Tabata, M.; Maeda, K.; Higashi, M.; Lu, D.; Takata, T.; Abe, R.; Domen, K. Langmuir 2010, 26, 9161. doi: 10.1021/la100722w
-
[1]
-

计量
- PDF下载量: 74
- 文章访问数: 1792
- HTML全文浏览量: 809