Particle-Stabilized Interfaces and Their Interactions at Interfaces

Guanqing Sun Zonglin Yi To Ngai

Citation:  Sun Guanqing, Yi Zonglin, Ngai To. Particle-Stabilized Interfaces and Their Interactions at Interfaces[J]. Acta Physico-Chimica Sinica, 2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910005 shu

胶体颗粒稳定的界面及胶体颗粒在界面的相互作用

    作者简介:

    To NGAI now is Professor in the Department of Chemistry, Assistant Dean (Research) of Science at the Chinese University of Hong Kong (CUHK), and Fellow of the Royal Society of Chemistry (FRSC). He received his B.Sc. in chemistry at CUHK in 1999. In 2003, he obtained the Ph.D at the same university, where he worked on light scattering and polymer interaction in solution. He moved to BASF (Ludwigshafen, Germany) in 2003 as the postdoctoral fellow for two years, working on colloids and surface chemistry. After a short postdoctoral training in the Chemistry Department at the University of Minnesota in 2005, he joined the Chemistry Department at CUHK in 2006 as a research assistant professor. He has been appointed as an assistant professor in 2008, and early promoted to associate professor in 2012. In 2017, he was promoted to Professor. His current research interests center around the colloids, surface chemistry, polymers and soft matter;
    通讯作者: 魏涛, tongai@cuhk.edu.hk
  • 基金项目:

    国家自然科学基金(21703085, 21972057)及中央高校基本科研业务费专项资金(JUS 1042050205182110)资助项目

    国家自然科学基金 21703085

    国家自然科学基金 21972057

    中央高校基本科研业务费专项资金 JUS 1042050205182110

摘要: 胶体颗粒稳定的分散体系如乳液、泡沫和气泡等体系在众多研究领域吸引了越来越多的关注。胶体颗粒的吸附机理、油-水界面和气-水界面的胶体颗粒稳定机制以及吸附于界面的胶体颗粒乳液相互作用对这些分散体系的实际应用至关重要。虽然在相关方面已经有众多研究,胶体颗粒对界面的稳定作用和胶体颗粒之间的相互作用仍然存在很多问题,值得进一步研究。在本文中,我们首先系统地回顾了历来胶体颗粒稳定的乳液和气泡体系的研究,并概括地介绍了在该领域内较为重要和较为成熟的研究进展,包括乳液、泡沫和液体弹珠等。人们早已认识到胶体颗粒在界面的吸附现象,在学术上的探讨也已经超过一个世纪。上世纪八十年代有研究者提出了定量的理论模型来描述这种现象。该理论从自由能降低的角度解释了为何胶体颗粒会吸附到界面上,并且能将胶体颗粒对两相的浸润性与乳液和泡沫体系的稳定性联系起来。在乳液稳定性方面,有大量的研究支撑了上述理论;研究者们制备了具有响应性的乳液体系,如pH/温度响应性。之后,我们讨论了吸附在界面的胶体颗粒的相互作用的最新进展,并提出了该领域内尚未解决的问题。由于需要精密的仪器和熟练的操作技巧,胶体颗粒在界面的相互作用实验和理论研究之间还存在巨大的差距。虽然弯曲界面更为常见,实验上通常采用水平界面作为模型界面来研究胶体颗粒在界面的相互作用。胶体颗粒在界面的引入会由摩擦导致电荷存在,这很可能是长程静电相互作用的原因。最后,我们介绍了胶体颗粒稳定的分散体系的在包埋、食品、控释和干水的制备等领域的应用。使用乳液液滴作为平台,是制备包埋体系的主要手段之一。吸附在界面的胶体颗粒,不仅可以稳定界面,也可以作为胶体微胶囊的壁材。使用自然来源的胶体颗粒为稳定颗粒,乳液体系可方便地应用于食品相关领域。近年来由于其全部由水相构成,水-水体系吸引了越来越多的关注。气-水界面与油-水界面具有相同的稳定机制,我们对一些基于气-水界面的应用进行了探讨。我们希望借由该篇文章鼓励更多的研究人员参与到胶体颗粒稳定界面的研究中来,并基于此开发出越来越多的新颖应用。

English

    1. [1]

      Ngai, T.; Bon, S. Particle-Stabilized Emulsions and Colloids: Formation and Applications; RSC Publishing: London, 2014.

    2. [2]

      Aveyard, R.; Binks, B. P.; Clint, J. H. Adv. Colloid Interface Sci. 2003, 100, 503. doi: 10.1016/S0001-8686(02)00069-6

    3. [3]

      Leal-Calderon, F.; Schmitt, V. Curr. Opin. Colloid Interface Sci. 2008, 13 (4), 217. doi: 10.1016/j.cocis.2007.09.005

    4. [4]

      Ramsden, W. Proc. R. Soc. London 1903, 72 (479), 156. doi: 10.1098/rspl.1903.0034

    5. [5]

      Pickering, S. U. J. Chem. Soc. 1907, 91, 2001. doi: 10.1039/CT9079102001

    6. [6]

      Finkle, P.; Draper, H. D.; Hildebrand, J. H. J. Am. Chem. Soc. 1923, 45 (12), 2780. doi: 10.1021/ja01665a002

    7. [7]

      Shuttleworth, R. Proc. Phys. Soc. London, Sect. A 1950, 63 (5), 444. doi: 10.1088/0370-1298/63/5/302

    8. [8]

      Matalon, R. Nature 1953, 172 (4366), 19. doi: 10.1038/172019a0

    9. [9]

      Pieranski, P. Phys. Rev. Lett. 1980, 45 (7), 569. doi: 10.1103/PhysRevLett.45.569

    10. [10]

      Levine, S.; Bowen, B. D.; Partridge, S. J. Colloids Surf. 1989, 38 (2), 345. doi: 10.1016/0166-6622(89)80272-0

    11. [11]

      Levine, S.; Bowen, B. D.; Partridge, S. J. Colloids Surf. 1989, 38 (2), 325. doi: 10.1016/0166-6622(89)80271-9

    12. [12]

      Levine, S.; Bowen, B. D. Colloids Surf. 1991, 59, 377. doi: 10.1016/0166-6622(91)80260-U

    13. [13]

      Shi, S.; Russell, T. P. Adv. Mater. 2018, 30 (44), e1800714. doi: 10.1002/adma.201800714

    14. [14]

      French, D. J.; Brown, A. T.; Schofield, A. B.; Fowler, J.; Taylor, P.; Clegg, P. S. Sci. Rep. 2016, 6, 31401. doi: 10.1038/srep31401

    15. [15]

      Binks, B. P. Curr. Opin. Colloid Interface Sci. 2002, 7 (1–2), 21. doi: 10.1016/S1359-0294(02)00008-0

    16. [16]

      Zanini, M.; Isa, L. J. Phys. Condens. Matter 2016, 28 (31), 313002. doi: 10.1088/0953-8984/28/31/313002

    17. [17]

      Kralova, I.; Sjoblom, J.; Oye, G.; Simon, S.; Grimes, B. A.; Paso, K. Adv. Colloid Interface Sci. 2011, 169 (2), 106. doi: 10.1016/j.cis.2011.09.001

    18. [18]

      Ngai, T.; Auweter, H.; Behrens, S. H. Macromolecules 2006, 39 (23), 8171. doi: 10.1021/ma061366k

    19. [19]

      Sun, G.; Li, Z.; Ngai, T. Angew. Chem. Int. Ed. Engl. 2010, 49 (12), 2163. doi: 10.1002/anie.200907175

    20. [20]

      Binks, B. P.; Whitby, C. P. Colloids Surf. A 2003, 224 (1–3), 241. doi: 10.1016/S0927-7757(03)00329-7

    21. [21]

      Jiang, J.; Zhu, Y.; Cui, Z.; Binks, B. P. Angew. Chem. Int. Ed. Engl. 2013, 52 (47), 12373. doi: 10.1002/anie.201305947

    22. [22]

      Shi, Y. L.; Xiong, D. Z.; Li, Z. Y.; Wang, H. Y.; Pei, Y. C.; Chen, Y. K.; Wang, J. J. ACS Sustainable Chem. Eng. 2018, 6 (11), 15383. doi: 10.1021/acssuschemeng.8b03808

    23. [23]

      Zhu, Y.; Jiang, J.; Liu, K.; Cui, Z.; Binks, B. P. Langmuir 2015, 31 (11), 3301. doi: 10.1021/acs.langmuir.5b00295

    24. [24]

      Chen, K.; Yu, G.; He, F.; Zhou, Q.; Xiao, D.; Li, J.; Feng, Y. Carbohydr. Polym. 2017, 176, 203. doi: 10.1016/j.carbpol.2017.07.046

    25. [25]

      Aveyard, R.; Binks, B. P.; Esquena, J.; Fletcher, P. D. I.; Buscall, R.; Davies, S. Langmuir 1999, 15 (4), 970. doi: 10.1021/La981099e

    26. [26]

      Binks, B. P.; Lumsdon, S. O. Phys. Chem. Chem. Phys. 1999, 1 (12), 3007. doi: 10.1039/A902209k

    27. [27]

      Binks, B. P.; Cho, W. G.; Fletcher, P. D. I.; Petsev, D. N. Langmuir 2000, 16 (3), 1025. doi: 10.1021/La990952m

    28. [28]

      28. Rand, B.; Pekenć, E.; Goodwin, J. W.; Smith, R. W. J. Chem. Soc. Faraday Trans. 1 1980, 76, 225. doi: 10.1039/f19807600225

    29. [29]

      Horozov, T. S.; Binks, B. P. Angew. Chem. Int. Ed. Engl. 2006, 45 (5), 773. doi: 10.1002/anie.200503131

    30. [30]

      Dickinson, E. Curr. Opin. Colloid Interface Sci. 2010, 15 (1–2), 40. doi: 10.1016/j.cocis.2009.11.001

    31. [31]

      Ashby, N. P.; Binks, B. P. Phys. Chem. Chem. Phys. 2000, 2 (24), 5640. doi: 10.1039/B007098j

    32. [32]

      Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299 (5604), 226. doi: 10.1126/science.1078616

    33. [33]

      Lin, Y.; Boker, A.; Skaff, H.; Cookson, D.; Dinsmore, A. D.; Emrick, T.; Russell, T. P. Langmuir 2005, 21 (1), 191. doi: 10.1021/la048000q

    34. [34]

      Wu, J.; Ma, G. H. Small 2016, 12 (34), 4633. doi: 10.1002/smll.201600877

    35. [35]

      Binks, B. P.; Murakami, R. Nat. Mater. 2006, 5 (11), 865. doi: 10.1038/nmat1757

    36. [36]

      Fujii, S.; Iddon, P. D.; Ryan, A. J.; Armes, S. P. Langmuir 2006, 22 (18), 7512. doi: 10.1021/la060812u

    37. [37]

      Fujii, S.; Ryan, A. J.; Armes, S. P. J. Am. Chem. Soc. 2006, 128 (24), 7882. doi: 10.1021/ja060640n

    38. [38]

      Zahn, K.; Lenke, R.; Maret, G. Phys. Rev. Lett. 1999, 82 (13), 2721. doi: 10.1103/PhysRevLett.82.2721

    39. [39]

      Aveyard, R.; Clint, J. H.; Nees, D.; Paunov, V. N. Langmuir 2000, 16 (4), 1969. doi: 10.1021/La990887g

    40. [40]

      Aveyard, R.; Binks, B. P.; Clint, J. H.; Fletcher, P. D.; Horozov, T. S.; Neumann, B.; Paunov, V. N.; Annesley, J.; Botchway, S. W.; Nees, D.; et al. Phys. Rev. Lett. 2002, 88 (24), 246102. doi: 10.1103/PhysRevLett.88.246102

    41. [41]

      Gao, P.; Xing, X.; Li, Y.; Ngai, T.; Jin, F. Sci. Rep. 2014, 4, 4778. doi: 10.1038/srep04778

    42. [42]

      Gao, P.; Yi, Z.; Xing, X.; Ngai, T.; Jin, F. Langmuir 2016, 32 (19), 4909. doi: 10.1021/acs.langmuir.6b01362

    43. [43]

      Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298 (5595), 1006. doi: 10.1126/science.1074868

    44. [44]

      Bollhorst, T.; Rezwan, K.; Maas, M. Chem. Soc. Rev. 2017, 46 (8), 2091. doi: 10.1039/c6cs00632a

    45. [45]

      Velev, O. D.; Furusawa, K.; Nagayama, K. Langmuir 1996, 12 (10), 2374. doi: 10.1021/La9506786

    46. [46]

      Velev, O. D.; Furusawa, K.; Nagayama, K. Langmuir 1996, 12 (10), 2385. doi: 10.1021/La950679y

    47. [47]

      Ao, Z.; Yang, Z.; Wang, J. F.; Zhang, G. Z.; Ngai, T. Langmuir 2009, 25 (5), 2572. doi: 10.1021/la804036m

    48. [48]

      Cayre, O. J.; Hitchcock, J.; Manga, M. S.; Fincham, S.; Simoes, A.; Williams, R. A.; Biggs, S. Soft Matter 2012, 8 (17), 4717. doi: 10.1039/c2sm00002d

    49. [49]

      Biggs, S.; Cayre, O. Particle-Stabilized Emulsions as Templates for Hollow Spheres and Microcapsules. In Particle-Stabilized Emulsions and Colloids: Formation and Applications; The Royal Society of Chemistry: London, 2015; Chapter 9, pp. 228–246.

    50. [50]

      Liu, D.; Xue, N.; Wei, L.; Zhang, Y.; Qin, Z.; Li, X.; Binks, B. P.; Yang, H. Angew. Chem. Int. Ed. Engl. 2018, 57 (34), 10899. doi: 10.1002/anie.201805022

    51. [51]

      He, Y. J.; Yu, X. Y. Mater. Lett. 2007, 61 (10), 2071. doi: 10.1016/j.matlet.2006.08.018

    52. [52]

      Yang, J.; Li, Y.; Wang, J.; Sun, X.; Cao, R.; Sun, H.; Huang, C.; Chen, J. Anal. Chim. Acta. 2015, 872, 35. doi: 10.1016/j.aca.2015.02.058

    53. [53]

      Harman, C. L. G.; Patel, M. A.; Guldin, S.; Davies, G. L. Curr. Opin. Colloid Interface Sci. 2019, 39, 173. doi: 10.1016/j.cocis.2019.01.017

    54. [54]

      Dickinson, E.; Rolfe, S. E.; Dalgleish, D. G. Food Hydrocolloids 1988, 2 (5), 397. doi: 10.1016/S0268-005X(88)80004-3

    55. [55]

      Dickinson, E. Colloids Surf. 1989, 42 (1), 191. doi: 10.1016/0166-6622(89)80086-1

    56. [56]

      Dickinson, E.; Evison, J.; Owusu, R. K. Food Hydrocolloids 1991, 5 (5), 481. doi: 10.1016/S0268-005x(09)80106-9

    57. [57]

      Kwok, M. H.; Sun, G.; Ngai, T. Langmuir 2019, 35 (12), 4205. doi: 10.1021/acs.langmuir.8b04009

    58. [58]

      Plamper, F. A.; Richtering, W. Acc. Chem. Res. 2017, 50 (2), 131. doi: 10.1021/acs.accounts.6b00544

    59. [59]

      Brandy, M. L.; Cayre, O. J.; Fakhrullin, R. F.; Velev, O. D.; Paunov, V. N. Soft Matter 2010, 6 (15), 3494. doi: 10.1039/c0sm00003e

    60. [60]

      Skelhon, T. S.; Grossiord, N.; Morgan, A. R.; Bon, S. A. F. J. Mater. Chem. 2012, 22 (36), 19289. doi: 10.1039/c2jm34233b

    61. [61]

      de Folter, J. W. J.; van Ruijven, M. W. M.; Velikov, K. P. Soft Matter 2012, 8 (25), 2807. doi: 10.1039/C2SM07417F

    62. [62]

      Zhou, F. Z.; Huang, X. N.; Wu, Z. L.; Yin, S. W.; Zhu, J. H.; Tang, C. H.; Yang, X. Q. J. Agric. Food Chem. 2018, 66 (42), 11113. doi: 10.1021/acs.jafc.8b03714

    63. [63]

      Wang, L. J.; Yin, S. W.; Wu, L. Y.; Qi, J. R.; Guo, J.; Yang, X. Q. Food Chem. 2016, 213, 462. doi: 10.1016/j.foodchem.2016.06.119

    64. [64]

      Zhu, Q. M.; Lu, H. Q.; Zhu, J. Y.; Zhang, M.; Yin, L. J. Food Hydrocolloids 2019, 91, 204. doi: 10.1016/j.foodhyd.2019.01.029

    65. [65]

      Nan, F. F.; Wu, J.; Qi, F.; Fan, Q. Z.; Ma, G. H.; Ngai, T. J. Mater. Chem. B 2014, 2 (42), 7403. doi: 10.1039/c4tb01259c

    66. [66]

      Tang, C.; Spinney, S.; Shi, Z.; Tang, J.; Peng, B.; Luo, J.; Tam, K. C. Langmuir 2018, 34 (43), 12897. doi: 10.1021/acs.langmuir.8b02437

    67. [67]

      Dickinson, E. Trends Food Sci. Technol. 2019, 83, 31. doi: 10.1016/j.tifs.2018.11.004

    68. [68]

      Madadlou, A.; Saint-Jalmes, A.; Guyomarc'h, F.; Floury, J.; Dupont, D. Food Hydrocolloids 2019, 93, 351. doi: 10.1016/j.foodhyd.2019.02.031

    69. [69]

      Albertsson, P. Å. Partition of Cell Particles and Macromolecules in Polymer Two-Phase Systems. In Adv. Protein Chem. Anfinsen, C. B.; Edsall, J. T.; Richards, F. M. Eds.; Academic Press: New York, 1970; Vol. 24; pp. 309–341.

    70. [70]

      Firoozmand, H.; Murray, B. S.; Dickinson, E. Langmuir 2009, 25 (3), 1300. doi: 10.1021/la8037389

    71. [71]

      Yaman, K.; Jeppesen, C.; Marques, C. M. Europhys. Lett. 1998, 42 (2), 221. doi: 10.1209/epl/i1998-00227-1

    72. [72]

      Balakrishnan, G.; Nicolai, T.; Benyahia, L.; Durand, D. Langmuir 2012, 28 (14), 5921. doi: 10.1021/la204825f

    73. [73]

      Nguyen, B. T.; Nicolai, T.; Benyahia, L. Langmuir 2013, 29 (34), 10658. doi: 10.1021/la402131e

    74. [74]

      Cacace, D. N.; Rowland, A. T.; Stapleton, J. J.; Dewey, D. C.; Keating, C. D. Langmuir 2015, 31 (41), 11329. doi: 10.1021/acs.langmuir.5b02754

    75. [75]

      Nguyen, B. T.; Wang, W.; Saunders, B. R.; Benyahia, L.; Nicolai, T. Langmuir 2015, 31 (12), 3605. doi: 10.1021/la5049024

    76. [76]

      Dickinson, E. Food Hydrocolloids 2016, 52, 497. doi: 10.1016/j.foodhyd.2015.07.029

    77. [77]

      Esquena, J. Curr. Opin. Colloid Interface Sci. 2016, 25, 109. doi: 10.1016/j.cocis.2016.09.010

    78. [78]

      Gonzalez-Jordan, A.; Nicolai, T.; Benyahia, L. Langmuir 2016, 32 (28), 7189. doi: 10.1021/acs.langmuir.6b01993

    79. [79]

      de Freitas, R. A.; Nicolai, T.; Chassenieux, C.; Benyahia, L. Langmuir 2016, 32 (5), 1227. doi: 10.1021/acs.langmuir.5b03761

    80. [80]

      Chatsisvili, N.; Philipse, A. P.; Loppinet, B.; Tromp, R. H. Food Hydrocolloids 2017, 65, 17. doi: 10.1016/j.foodhyd.2016.10.036

    81. [81]

      Nicolai, T.; Murray, B. Food Hydrocolloids 2017, 68, 157. doi: 10.1016/j.foodhyd.2016.08.036

    82. [82]

      Ben Ayed, E.; Cochereau, R.; Dechance, C.; Capron, I.; Nicolai, T.; Benyahia, L. Langmuir 2018, 34 (23), 6887. doi: 10.1021/acs.langmuir.8b01239

    83. [83]

      Binks, B. P.; Shi, H. Langmuir 2019, 35 (11), 4046. doi: 10.1021/acs.langmuir.8b04151

    84. [84]

      Binks, B. P.; Tyowua, A. T. Soft Matter 2016, 12 (3), 876. doi: 10.1039/c5sm02438b

    85. [85]

      Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16 (8), 3748. doi: 10.1021/La991427q

    86. [86]

      Aussillous, P.; Quere, D. Nature 2001, 411 (6840), 924. doi: 10.1038/35082026

    87. [87]

      Bormashenko, E. Langmuir 2017, 33 (3), 663. doi: 10.1021/acs.langmuir.6b03231

    88. [88]

      Aussillous, P.; Quere, D. Proc. R. Soc. A 2006, 462 (2067), 973. doi: 10.1098/rspa.2005.1581

    89. [89]

      Gao, L.; McCarthy, T. J. Langmuir 2007, 23 (21), 10445-7. doi: 10.1021/la701901b

    90. [90]

      Dandan, M.; Erbil, H. Y. Langmuir 2009, 25 (14), 8362. doi: 10.1021/la900729d

    91. [91]

      Tosun, A.; Erbil, H. Y. Appl. Surf. Sci. 2009, 256 (5), 1278. doi: 10.1016/j.apsusc.2009.10.035

    92. [92]

      Bormashenko, E.; Bormashenko, Y.; Musin, A.; Barkay, Z. Chemphyschem 2009, 10 (4), 654-6. doi: 10.1002/cphc.200800746

    93. [93]

      Bormashenko, E.; Musin, A. Appl. Surf. Sci. 2009, 255 (12), 6429. doi: 10.1016/j.apsusc.2009.02.027

    94. [94]

      Bormashenko, E.; Pogreb, R.; Whyman, G.; Musin, A. Colloids Surf. A 2009, 351 (1–3), 78. doi: 10.1016/j.colsurfa.2009.09.027

    95. [95]

      94. Bormashenko, E.; Balter, R.; Aurbach, D. Appl. Phys. Lett. 2010, 97 (9), 091908. doi: 10.1063/1.3487936

    96. [96]

      Tian, J.; Arbatan, T.; Li, X.; Shen, W. Chem. Commun. 2010, 46 (26), 4734. doi: 10.1039/c001317j

    97. [97]

      Zhang, L.; Cha, D.; Wang, P. Adv. Mater. 2012, 24 (35), 4756. doi: 10.1002/adma.201201885

    98. [98]

      Sheng, Y.; Sun, G.; Wu, J.; Ma, G.; Ngai, T. Angew. Chem. Int. Ed. Engl. 2015, 54 (24), 7012. doi: 10.1002/anie.201500010

    99. [99]

      Serrano, M. C.; Nardecchia, S.; Gutierrez, M. C.; Ferrer, M. L.; del Monte, F. ACS Appl. Mater. Interfaces 2015, 7 (6), 3854. doi: 10.1021/acsami.5b00072

    100. [100]

      Arbatan, T.; Li, L.; Tian, J.; Shen, W. Adv. Healthc. Mater. 2012, 1 (1), 80. doi: 10.1002/adhm.201100016

    101. [101]

      Oliveira, N. M.; Reis, R. L.; Mano, J. F. Adv. Healthc. Mater. 2017, 6 (19), 1700192. doi: 10.1002/adhm.201700192

  • 加载中
计量
  • PDF下载量:  18
  • 文章访问数:  766
  • HTML全文浏览量:  109
文章相关
  • 发布日期:  2020-10-15
  • 收稿日期:  2019-10-07
  • 接受日期:  2019-12-31
  • 修回日期:  2019-12-28
  • 网络出版日期:  2020-02-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章