Citation: LIU Hai, LI Yi, MA Zhaoxia, ZHOU Zhixuan, LI Junling, HE Yuanhang. Study on the Initial Decomposition Mechanism of Energetic Co-Crystal 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-Hexaazaiso-Wurtzitane (CL-20)/1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazacy-Clooctane (HMX) under a Steady Shock Wave[J]. Acta Physico-Chimica Sinica, 2019, 35(8): 858-867. doi: 10.3866/PKU.WHXB201812011
定常冲击波作用下六硝基六氮杂异伍兹烷(CL-20)/奥克托今(HMX)含能共晶初始分解机理研究
English
Study on the Initial Decomposition Mechanism of Energetic Co-Crystal 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-Hexaazaiso-Wurtzitane (CL-20)/1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazacy-Clooctane (HMX) under a Steady Shock Wave
-
-
[1]
Cherukuvada, S.; Kaur, R.; Row, T. N. G. CrystEngComm 2016, 18, 8528. doi: 10.1039/C6CE01835A
-
[2]
Ross, S. A.; Lamprou, D. A.; Douroumis, D. Chem. Commun. 2016, 52, 8772. doi: 10.1039/C6CC01289B
-
[3]
Bolton, O.; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 123, 9122. doi: 10.1002/ange.201104164
-
[4]
Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. Cryst. Growth Des. 2012, 12, 4311. doi: 10.1021/cg3010882
-
[5]
Yang, Z.; Li, H.; Zhou, X.; Zhang, C.; Huang, H.; Li, J.; Nie, F. Cryst. Growth Des. 2012, 12, 5155. doi: 10.1021/cg300955q
-
[6]
Xu, H.; Duan, X.; Li, H.; Pei, C. RSC Adv. 2015, 5, 95764. doi: 10.1039/C5RA17578J
-
[7]
Wang, Y.; Yang, Z.; Li, H.; Zhou, X.; Zhang, Q.; Wang, J.; Liu, Y. Propell. Explos. Pyrotech. 2014, 39, 590. doi: 10.1002/prep.201300146
-
[8]
Huang, C.; Xu, J.; Tian, X.; Liu, J.; Pan, L.; Yang, Z.; Nie, F. Cryst. Growth Des. 2018, 18, 2121. doi: 10.1021/acs.cgd.7b01568
-
[9]
Liu, N.; Duan, B.; Lu, X.; Mo, H.; Xu, M.; Zhang, Q.; Wang, B. CrystEngComm 2018, 20, 2060. doi: 10.1039/C8CE00006A
-
[10]
Duan, B.; Shu, Y.; Liu, N.; Wang, B.; Lu, X.; Lu, Y. CrystEngComm 2018, 20, 5790. doi: 10.1039/C8CE01132J
-
[11]
Urbelis, J. H.; Young, V. G.; Swift, J. A. CrystEngComm 2015, 17, 1564. doi: 10.1039/C4CE02285H
-
[12]
Ma, Q.; Jiang, T.; Chi, Y.; Chen, Y.; Wang, J.; Huang, J.; Nie, F. New J. Chem. 2017, 41, 4165. doi: 10.1039/C6NJ03976F
-
[13]
Yang, Z.; Zeng, Q.; Zhou, X.; Zhang, Q.; Nie, F.; Huang, H.; Li, H. RSC Adv. 2014, 4, 65121. doi: 10.1039/C4RA12248H
-
[14]
Zhang, C.; Cao, Y.; Li, H.; Zhou, Y.; Zhou, J.; Gao, T.; Zhang, H.; Yang, Z.; Jiang, G. CrystEngComm 2013, 15, 4003. doi: 10.1039/C3CE40112J
-
[15]
Zhang, C.; Xue, X.; Cao, Y.; Zhou, J.; Zhang, A.; Li, H.; Zhou, Y.; Xu, R.; Gao, T. CrystEngComm 2014, 16, 5905. doi: 10.1039/C4CE00584H
-
[16]
Wei, X.; Zhang, A.; Ma, Y.; Xue, X.; Zhou, J.; Zhu, Y.; Zhang, C. CrystEngComm 2015, 17, 9037. doi: 10.1039/C5CE02009C
-
[17]
Zeng, Q.; Ma, Y.; Li, J.; Zhang, C. CrystEngComm 2017, 19, 2687. doi: 10.1039/C6CE02373H
-
[18]
Zhang, L.; Wu, J. Z.; Jiang, S. L.; Yu, Y.; Chen, J. Phys. Chem. Chem. Phys. 2016, 18, 26960. doi: 10.1039/C6CP03526D
-
[19]
Zhang, Z. B.; Li, T.; Yin, L.; Yin, X.; Zhang, J. G. RSC Adv. 2016, 6, 76075. doi: 10.1039/C6DT03960J
-
[20]
Ma, Y.; Meng, L.; Li, H.; Zhang, C. CrystEngComm 2017, 19, 3145. doi: 10.1039/C7CE00529F
-
[21]
Landenberger, K. B.; Matzger, A. J. Cryst. Growth Des. 2010, 10, 5341. doi: 10.1021/cg101300n
-
[22]
Zhang, J.; Shreeve, J. M. CrystEngComm 2016, 18, 6124. doi: 10.1039/C6CE01239F
-
[23]
Guo, D.; An, Q.; Zybin, S. V.; Goddard, W. A., Ⅲ.; Huang, F.; Tang, B. J. Mater. Chem. A 2015, 3, 5409. doi: 10.1039/C4TA06858K
-
[24]
Guo, D.; An, Q.; Goddard, W. A., Ⅲ.; Zybin, S. V.; Huang, F. J. Phys. Chem. C 2014, 118, 30202. doi: 10.1021/jp5093527
-
[25]
Zhang, X. Q.; Chen, X. R.; Kaliamurthi, S.; Selvaraj, G.; Ji, G. F.; Wei, D. Q. J. Phys. Chem. C 2018, 122, 24270. doi: 10.1021/acs.jpcc.8b06953
-
[26]
Qiu, H.; Patel, R. B.; Damavarapu, R. S.; Stepanov, V. CrystEngComm 2015, 17, 4080. doi: 10.1039/C5CE00489F
-
[27]
Sun, S.; Zhang, H.; Liu, Y.; Xu, J.; Huang, S.; Wang, S.; Sun, J. Cryst. Growth Des. 2017, 18, 77. doi: 10.1021/acs.cgd.7b00775
-
[28]
Ghosh, M.; Sikder, A. K.; Banerjee, S.; Gonnade, R. G. Cryst. Growth Des. 2018, 18, 3781. doi: 10.1021/acs.cgd.8b00015
-
[29]
Sun, T.; Xiao, J. J.; Liu, Q.; Zhao, F.; Xiao, H. M. J. Mater. Chem. A 2014, 2, 13898. doi: 10.1039/C4TA01150C
-
[30]
Liu, Z.; Wu, Q.; Zhu, W.; Xiao, H. RSC Adv. 2015, 5, 34216. doi: 10.1039/C5RA01829C
-
[31]
Xue, X.; Ma, Y.; Zeng, Q.; Zhang, C. J. Phys. Chem. C 2017, 121, 4899. doi: 10.1021/acs.jpcc.7b00698
-
[32]
Okovytyy, S.; Kholod, Y.; Qasim, M.; Fredrickson, H.; Leszczynski, J. J. Phys. Chem. A 2005, 109, 2964. doi: 10.1021/jp045292v
-
[33]
Isayev, O.; Gorb, L.; Qasim, M.; Leszczynski, J. J. Phys. Chem. B 2008, 112, 11005. doi: 10.1021/jp804765m
-
[34]
Wang, F.; Chen, L.; Geng, D.; Wu, J.; Lu, J.; Wang, C. J. Phys. Chem. A 2018, 122, 3971. doi: 10.1021/acs.jpca.8b01256
-
[35]
Xue, X.; Wen, Y.; Zhang, C. J. Phys. Chem. C 2016, 120, 21169. doi: 10.1021/acs.jpcc.6b05228
-
[36]
Ge, N. N.; Wei, Y. K.; Ji, G. F.; Chen, X. R.; Zhao, F.; Wei, D. Q. J. Phys. Chem. B 2012, 116, 13696. doi: 10.1021/jp309120t
-
[37]
Ge, N. N.; Wei, Y. K.; Song, Z. F.; Chen, X. R.; Ji, G. F.; Zhao, F.; Wei, D. Q. J. Phys. Chem. B 2014, 118, 8691. doi: 10.1021/jp502432g
-
[38]
Wen, Y.; Xue, X.; Zhou, X.; Guo, F.; Long, X.; Zhou, Y.; Li, H.; Zhang, C. J. Phys. Chem. C 2013, 117, 24368. doi: 10.1021/jp4072795
-
[39]
Zhu, W.; Huang, H.; Huang, H.; Xiao, H. J. Chem. Phys. 2012, 136, 044516. doi: 10.1063/1.3679384
-
[40]
Reed, E. J.; Fried, L. E.; Joannopoulos, J. D. Phys. Rev. Lett. 2003, 90, 235503. doi: 10.1103/PhysRevLett.90.235503
-
[41]
Reed, E. J.; Fried, L. E.; Henshaw, W. D.; Tarver, C. M. Phys. Rev. E 2006, 74, 056706. doi: 10.1103/PhysRevE.74.056706
-
[42]
Reed, E. J.; Maiti, A.; Fried, L. E. Phys. Rev. E 2010, 81, 016607. doi: 10.1103/PhysRevE.81.016607
-
[43]
Plimpton, S. J. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.10 39
-
[44]
Liu, L.; Liu, Y.; Zybin, S. V.; Sun, H.; Goddard, W. A., Ⅲ. J. Phys. Chem. A 2011, 115, 11016. doi: 10.1021/jp201599t
-
[45]
Van Duin, A. C.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u
-
[46]
Chenoweth, K.; Van Duin, A. C. T.; Goddard, W. A. J. Phys. Chem. A 2008, 112, 1040. doi: 10.1021/jp709896w
-
[47]
Zhou, T. T.; Huang, F, L. J. Phys. Chem. B. 2010, 115, 278. doi: 10.1021/jp105805w
-
[48]
刘海, 杨镇, 何远航.含能材料, 2017, 25, 557. doi: 10.11943/j.issn.1006-9941.2017.07.005Liu, H.; Yang, Z.; He, Y. -H. Chin J Energ Mater. 2017, 25, 557. doi: 10.11943/j.issn.1006-9941.2017.07.005
-
[49]
张亚平, 杨镇, 李启凯, 何远航.化学学报, 2018, 76, 556. doi: 10.6023/A18040153Zhang Y. -P.; Yang, Z.; Li, Q. -K.; He, Y. -H. Acta Chim. Sin. 2018, 76, 556. doi: 10.6023/A18040153
-
[50]
Budzien, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B 2009, 113, 13142. doi: 10.1021/jp9016695
-
[51]
Holian, B. L. Shock Waves. 2004, 13, 489. doi: 10.1007/s00193-004-0226-5
-
[52]
He, Z. H.; Chen, J.; Ji, G. F.; Liu, L. M.; Zhu, W. J.; Wu, Q. J. Phys. Chem. B. 2015, 119, 10673. doi: 10.1021/acs.jpcb.5b05081
-
[53]
Ge, N. N.; Bai, S.; Chang, J.; Ji, G. F. RSC Adv. 2018, 8, 17312. doi: 10.1039/C8RA00409A
-
[54]
Shan, T. R.; Wixom, R. R.; Mattsson, A. E.; Thompson, A. P. J. Phys. Chem. B 2013, 117, 928. doi: 10.1021/jp310473h
-
[55]
He, Z. H.; Chen, J.; Wu, Q. J. Phys. Chem. C 2017, 121, 8227. doi: 10.1021/acs.jpcc.6b10354
-
[56]
Furman, D.; Kosloff, R.; Dubnikova, F.; Zybin, S. V.; Goddard, W. A., Ⅲ.; Rom, N.; Hirshberg, B.; Zeiri, Y. J. Am. Chem. Soc. 2014, 136, 4192. doi: 10.1021/ja410020f
-
[57]
Engelke, R.; Blais, N. C.; Sheffield, S. A.; Sander, R. K. J. Phys. Chem. A 2001, 105, 6955. doi: 10.1021/jp010492h
-
[58]
Marsh, S. P. In LASL Shock Hugoniot Data: Marsh, S. P. Ed.; University of California Press, Berkeley Los Angeles×London, 1980; p. 595.
-
[59]
Nomura, K. I.; Kalia, R. K.; Nakano, A.; Vashishta, P.; van Duin, A. C.; Goddard, W. A., Ⅲ. Phys. Rev. Lett. 2007, 99, 148303. doi: 10.1103/PhysRevLett.99.148303
-
[60]
李维新.一维不定常流与冲击波.北京: 国防工业出版社, 2003: 212-215.Li, W. -X. In One-Dimensional Nonsteady Flow and Shock Waves; National Defense Industry Press: Beijing, 2003; pp. 212-215.
-
[1]
计量
- PDF下载量: 8
- 文章访问数: 472
- HTML全文浏览量: 73