锂硒电池正极材料的研究进展

陈东 岳昕阳 李璕琭 吴晓京 周永宁

引用本文: 陈东, 岳昕阳, 李璕琭, 吴晓京, 周永宁. 锂硒电池正极材料的研究进展[J]. 物理化学学报, 2019, 35(7): 667-683. doi: 10.3866/PKU.WHXB201806062 shu
Citation:  CHEN Dong, YUE Xinyang, LI Xunlu, WU Xiaojing, ZHOU Yongning. Research Progress of Cathode Materials for Lithium-Selenium Batteries[J]. Acta Physico-Chimica Sinica, 2019, 35(7): 667-683. doi: 10.3866/PKU.WHXB201806062 shu

锂硒电池正极材料的研究进展

    作者简介:



    周永宁,复旦大学青年研究员,出生于1982年。2010年在复旦大学材料科学系获得博士学位;2010-2011年复旦大学化学系从事博士后研究;2012-2015年在美国布鲁克海文国家实验室任助理研究员;2015年回国加入复旦大学材料科学系,任青年研究员。主要从事新型电池材料设计及机理研究;
    通讯作者: 周永宁, ynzhou@fudan.edu.cn
  • 基金项目:

    国家自然科学基金(51502039)和中央组织部青年千人计划(D1210005)资助项目

摘要: 锂硒电池因其高体积比容量(3253 mAh·cm-3),以及硒的高电导率(1 × 10-3 S·m-1)等显著优点,在体积受限的储能系统中具有潜在的应用价值。引起了国内外研究学者的广泛关注。但是,目前锂硒电池的性能还不理想,仍然存在许多科学问题亟待解决,包括多硒化锂的穿梭效应,电解液的适配性,充放电过程中电极体积变化等。近年来,研究工作者针对这些关键科学问题开展了许多研究和探索,锂硒电池已成为储能领域的一个新的研究热点。本文综述了锂硒电池的研究现状,着重介绍了硒-碳复合正极材料的研究进展,论述了锂硒电池的优势及存在的问题,系统分析了硒基正极材料结构和性能之间的关系,总结了锂硒电池的反应机理及其与电解液的相关性,最后展望了锂硒电池的未来发展方向。

English

    1. [1]

      Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Adv. Mater. 2017, 29, 1601759. doi: 10.1002/adma.201601759

    2. [2]

      Yue, J.; Yan, M.; Yin, Y. X.; Guo, Y. G. Adv. Funct. Mater. 2018, 1707533. doi: 10.1002/adfm.201707533

    3. [3]

      Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/NMAT2460

    4. [4]

      Eftekhari, A.; Kim, D. W. J. Mater. Chem. A 2017, 5, 17734. doi: 10.1039/C7TA00799J

    5. [5]

      Wei, S. Z.; Li, W.; Cha, J. J.; Zheng, G.; Yang, Y.; Mcdowell, M. T.; Hsu, P. C.; Cui, Y. Nat. Commun. 2013, 4, 1331. doi: 10.1038/ncomms2327

    6. [6]

      Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2012, 134, 18510. doi: 10.1021/ja308170k

    7. [7]

      Ma, X. Z.; Jin, B.; Xin, P. M.; Wang, H. H. Appl. Surf. Sci. 2014, 307, 346. doi: 10.1016/j.apsusc.2014.04.036

    8. [8]

      Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M. H.; Saraf, L. V.; Nie, Z.; Exarhos, G. J.; Liu, J. Adv. Mater. 2012, 24, 1176. doi: 10.1002/adma.201103392

    9. [9]

      Hu, C.; Chen, H.; Shen, Y.; Lu, D.; Zhao, Y.; Lu, A. H.; Wu, X.; Lu, W.; Chen, L. Nat. Commun. 2017, 8, 479. doi: 10.1038/s41467-017-00656-8

    10. [10]

      Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2017, 133, 18522. doi: 10.1021/ja206955k

    11. [11]

      Xi, K.; Cao, S.; Peng, X.; Ducati, C.; Kumar, R. V.; Cheetham, A. K. Chem. Commun. 2013, 49, 2192. doi: 10.1039/c3cc38009b

    12. [12]

      Zhou, J.; Qian, T.; Xu, N.; Wang, M.; Ni, X.; Liu, X.; Shen, X.; Yan, C. Adv. Mater. 2017, 29, 1701294. doi: 10.1002/adma.201701294

    13. [13]

      杜雪丽.锂硫/硒电池用复合正极材料的制备及性能研究[D].合肥: 合肥工业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10359-1016112618.htmDu, X. L. Preparation and property research of the composite cathode materials for lithium-sulfur/selenium battery. M. S. Dissertation, Hefei University of Technology, Hefei, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10359-1016112618.htm

    14. [14]

      吴超.多孔碳材料在高比能锂硫、锂硒电池中的应用[D].武汉: 华中科技大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10487-1015905460.htmWu, C. Application of porous carbon materials in lithium-sulfur and lithium-selenium batteries. M. S. Dissertation, Huazhong University of Science and Technology, Wuhan, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10487-1015905460.htm

    15. [15]

      金玉红, 王莉, 何向明.储能科学与技术, 2015, 4, 569. doi: 10.3969/j.issn.2095-4239.2015.06.004Jin, Y. H.; Wang, L.; He, X. M. Energy Storage Science and Technology 2015, 4, 569. doi: 10.3969/j.issn.2095-4239.2015.06.004

    16. [16]

      曾林超.柔性锂(钠)硫电池和锂(钠)硒电池正极材料的制备及电化学性能研究[D].合肥: 中国科学技术大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10358-1016320093.htmZeng, L. C. Flexible cathode material for Li/Na-S batteries and Li/Na-Se batteries. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10358-1016320093.htm

    17. [17]

      张贺.生物质基多孔碳材料的制备及其在锂硒电池正极中的应用研究[D].济南: 山东大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10422-1017082054.htmZhang, H. Studies on the synthesis and application of biomass-based porous carbon materials for lithium-selenium battery cathodes. M. S. Dissertation, Shandong University, Jinan, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10422-1017082054.htm

    18. [18]

      刘蕾.中孔炭微球/硫(硒)正极材料的制备及电化学性能研究[D].上海: 华东理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10251-1015322536.htmLiu, L. Synthesis and electrochemical performance of mesoporous carbon microsphere/sulfur (selenium) cathodes for lithium rechargeable batteries. M. S. Dissertation, East China University of Science and Technology, Shanghai, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10251-1015322536.htm

    19. [19]

      Jin, J.; Tian, X.; Srikanth, N.; Kong, L. B.; Zhou, K. J. Mater. Chem. A 2017, 5, 10110. doi: 10.1039/c7ta01384a

    20. [20]

      Zhou, X.; Gao, P.; Sun, S.; Bao, D.; Wang, Y.; Li, X.; Wu, T.; Chen, Y.; Yang, P. Chem. Mater. 2015, 27, 6730. doi: 10.1021/acs.chemmater.5b02753

    21. [21]

      Cui, Y.; Abouimrane, A.; Lu, J.; Bolin, T.; Ren, Y.; Weng, W.; Sun, C.; Maroni, V. A.; Heald, S. M.; Amine, K. J. Am. Chem. Soc. 2013, 135, 8047. doi: 10.1021/ja402597g

    22. [22]

      Abouimrane, A.; Dambournet, D.; Chapman, K. W.; Chupas, P. J.; Weng, W.; Amine, K. J. Am. Chem. Soc. 2012, 134, 4505. doi: 10.1021/ja211766q

    23. [23]

      Eftekhari, A. Sustainable Energy Fuels 2017, 1, 14. doi: 10.1039/c6se00094k

    24. [24]

      Zeng, L.; Wei, X.; Wang, J.; Jiang, Y.; Li, W.; Yu, Y. J. Power Sources 2015, 281, 461. doi: 10.1016/j.jpowsour.2015.02.029

    25. [25]

      Zeng, L.; Zeng, W.; Jiang, Y.; Wei, X.; Li, W.; Yang, C.; Zhu, Y.; Yu, Y. Adv. Energy Mater. 2015, 5, 1401377. doi: 10.1002/aenm.201401377

    26. [26]

      Liu, Y.; Si, L.; Du, Y.; Zhou, X.; Dai, Z.; Bao, J. J. Phys. Chem. C. 2015, 119, 27316. doi: 10.1021/acs.jpcc.5b09553

    27. [27]

      Kundu, D.; Krumeich, F.; Nesper, R. J. Power Sources 2013, 236, 112. doi: 10.1016/j.jpowsour.2013.02.050

    28. [28]

      Park, S. K.; Park, J. S.; Kang, Y. C. J. Mater. Chem. A 2018, 6, 1028. doi: 10.1039/c7ta09676c

    29. [29]

      Wang, F.; Wu, X.; Li, C.; Zhu, Y.; Fu, L.; Wu, Y.; Liu, X. Energy Environ. Sci. 2016, 9, 3570. doi: 10.1039/c6ee02070d

    30. [30]

      Zhang, J.; Xu, Y.; Fan, L.; Zhu, Y.; Liang, J.; Qian, Y. Nano Energy 2015, 13, 592. doi: 10.1016/j.nanoen.2015.03.028

    31. [31]

      Luo, R.; Lu, Y.; Hou, X.; Yu, Q.; Peng, T.; Yan, H.; Liu, X.; Kim, J. K.; Luo, Y. J. Solid State Electr. 2017, 21, 3611. doi: 10.1007/s10008-017-3696-y

    32. [32]

      Han, K.; Liu, Z.; Ye, H.; Dai, F. J. Power Sources 2014, 263, 85. doi: 10.1016/j.jpowsour.2014.04.027

    33. [33]

      Lv, H.; Chen, R.; Wang, X.; Hu, Y.; Wang, Y.; Chen, T.; Ma, L.; Zhu, G.; Liang, J.; Tie, Z.; et al. ACS Appl. Mater. Inter. 2017, 9, 25232. doi: 10.1021/acsami.7b04321

    34. [34]

      Zhang, H.; Jia, D.; Yang, Z.; Yu, F.; Su, Y.; Wang, D.; Shen, Q. Carbon 2017, 122, 547. doi: 10.1016/j.carbon.2017.07.004

    35. [35]

      Zhang, S.; Wang, W.; Xin, S.; Ye, H.; Yin, Y.; Guo, Y. ACS Appl. Mater. Inter. 2017, 9, 8759. doi: 10.1021/acsami.6b16708

    36. [36]

      Balakumar, K.; Kalaiselvi, N. ACS Appl. Mater. Inter. 2017, 9, 26756. doi: 10.1021/acsami.7b05103

    37. [37]

      Youn, H.; Jeong, J. H.; Roh, K. C.; Kim, K. Sci. Rep.-UK 2016, 6, 30865. doi: 10.1038/srep30865

    38. [38]

      Hong, Y. J.; Kang, Y. C. Carbon 2017, 111, 198. doi: 10.1016/j.carbon.2016.09.069

    39. [39]

      Fan, S.; Zhang, Y.; Li, S. H.; Lan, T. Y.; Xu, J. L. RSC Adv. 2017, 7, 21281. doi: 10.1039/c6ra28463a

    40. [40]

      Li, J.; Zhao, X.; Zhang, Z.; Lai, Y. J. Alloy Compd. 2015, 619, 794. doi: 10.1016/j.jallcom.2014.09.099

    41. [41]

      Cai, Q.; Li, Y.; Wang, L.; Li, Q.; Xu, J.; Gao, B.; Zhang, X.; Huo, K.; Chu, P. K. Nano Energy 2017, 32, 1. doi: 10.1016/j.nanoen.2016.12.010

    42. [42]

      Balakumar, K.; Kalaiselvi, N. Carbon 2017, 112, 79. doi: 10.1016/j.carbon.2016.10.097

    43. [43]

      Jiang, Y.; Ma, X.; Feng, J.; Xiong, S. J. Mater. Chem. A 2015, 3, 4539. doi: 10.1039/C4TA06624C

    44. [44]

      Liu, L.; Wei, Y.; Zhang, C.; Zhang, C.; Li, X.; Wang, J.; Ling, L.; Qiao, W.; Long, D. Electrochim. Acta 2015, 153, 140. doi: 10.1016/j.electacta.2014.11.199

    45. [45]

      Guo, J.; Wang, Q.; Qi, C.; Jin, J.; Zhu, Y.; Wen, Z. Chem. Commun. 2016, 52, 5613. doi: 10.1039/c6cc00638h

    46. [46]

      Hong, Y. J.; Roh, K. C.; Kang, Y. C. J. Mater. Chem. A 2018, 6, 4152. doi: 10.1039/c7ta11112f

    47. [47]

      Xi, K.; Cao, S.; Peng, X.; Ducati, C.; Vasant Kumar, R.; Cheetham, A. K. Chem. Commun. 2013, 49, 2192. doi: 10.1039/c3cc38009b

    48. [48]

      Xu, G.; Ding, B.; Shen, L.; Nie, P.; Han, J.; Zhang, X. J. Mater. Chem. A 2013, 1, 4490. doi: 10.1039/c3ta00004d

    49. [49]

      Liu, L.; Guo, H.; Liu, J.; Qian, F.; Zhang, C.; Li, T.; Chen, W.; Yang, X.; Guo, Y. Chem. Commun. 2014, 50, 9485. doi: 10.1039/c4cc03807j

    50. [50]

      Z, L.; L, Y. Nanoscale 2015, 7, 9597. doi: 10.1039/c5nr00903k

    51. [51]

      Liu, T.; Jia, M.; Zhang, Y.; Han, J.; Li, Y.; Bao, S.; Liu, D.; Jiang, J.; Xu, M. J. Power Sources 2017, 341, 53. doi: 10.1016/j.jpowsour.2016.11.099

    52. [52]

      He, J.; Lv, W.; Chen, Y.; Xiong, J.; Wen, K.; Xu, C.; Zhang, W.; Li, Y.; Qin, W.; He, W. J. Power Sources 2017, 363, 103. doi: 10.1016/j.jpowsour.2017.07.065

    53. [53]

      Sun, K.; Zhao, H.; Zhang, S.; Yao, J.; Xu, J. Ionics 2015, 21, 2477. doi: 10.1007/s11581-015-1451-x

    54. [54]

      Jia, M.; Niu, Y.; Mao, C.; Liu, S.; Zhang, Y.; Bao, S. J.; Xu, M. J. Colloid Interface Sci. 2017, 490, 747. doi: 10.1016/j.jcis.2016.12.012

    55. [55]

      Xie, L.; Yu, S.; Yang, H.; Yang, J.; Ni, J.; Wang, J. Rare Met. 2017, 36, 434. doi: 10.1007/s12598-017-0910-0

    56. [56]

      Jia, M.; Lu, S.; Chen, Y.; Liu, T.; Han, J.; Shen, B.; Wu, X.; Bao, S.; Jiang, J.; Xu, M. J. Power Sources 2017, 367, 17. doi: 10.1016/j.jpowsour.2017.09.038

    57. [57]

      Ding, J.; Zhou, H.; Zhang, H.; Tong, L.; Mitlin, D. Adv. Energy Mater. 2018, 8, 1701918. doi: 10.1002/aenm.201701918

    58. [58]

      Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H.; Li, F.; Ren, W. Adv. Mater. 2016, 28, 1603. doi: 10.1002/adma.201504765

    59. [59]

      Cao, X.; Shi, Y.; Shi, W.; Rui, X.; Yan, Q.; Kong, J.; Zhang, H. Small 2013, 9, 3433. doi: 10.1002/smll.201202697

    60. [60]

      He, J.; Chen, Y.; Lv, W.; Wen, K.; Xu, C.; Zhang, W.; Qin, W.; He, W. ACS Energy Lett. 2016, 1, 820. doi: 10.1021/acsenergylett.6b00272

    61. [61]

      Han, K.; Liu, Z.; Shen, J.; Lin, Y.; Dai, F.; Ye, H. Adv. Funct. Mater. 2015, 25, 455. doi: 10.1002/adfm.201402815

    62. [62]

      Huang, D.; Li, S.; Luo, Y.; Xiao, X.; Gao, L.; Wang, M.; Shen, Y. Electrochim. Acta 2016, 190, 258. doi: 10.1016/j.electacta.2015.12.187

    63. [63]

      He, J.; Chen, Y.; Lv, W.; Wen, K.; Li, P.; Wang, Z.; Zhang, W.; Qin, W.; He, W. ACS Energy Lett. 2016, 1, 16. doi: 10.1021/acsenergylett.6b00015

    64. [64]

      Sha, L.; Gao, P.; Ren, X.; Chi, Q.; Chen, Y.; Yang, P. Chem. -Eur. J. 2018, 24, 2151. doi: 10.1002/chem.201704079

    65. [65]

      Mukkabla, R.; Deshagani, S.; Meduri, P.; Deepa, M.; Ghosal, P. ACS Energy Lett. 2017, 2, 1288. doi: 10.1021/acsenergylett.7b00251

    66. [66]

      Zhou, J.; Yang, J.; Xu, Z.; Zhang, T.; Chen, Z.; Wang, J.; Zhou, J.; Yang, J.; Xu, Z.; Zhang, T. J. Mater. Chem. A 2017, 5, 9350. doi: 10.1039/c7ta01564j

    67. [67]

      Zeng, L.; Chen, X.; Liu, R.; Lin, L.; Zheng, C.; Xu, L.; Luo, F.; Qian, Q.; Chen, Q.; Wei, M. J. Mater. Chem. A 2017, 5, 22997. doi: 10.1039/c7ta06884k

    68. [68]

      Zheng, C.; Liu, M.; Chen, W.; Zeng, L.; Wei, M. J. Mater. Chem. A 2016, 4, 13646. doi: 10.1039/C6TA05029H

    69. [69]

      Zhao, C.; Xu, L.; Hu, Z.; Qiu, S.; Liu, K. RSC Adv. 2016, 6, 47486. doi: 10.1039/C6RA07837K

    70. [70]

      Babu, D. B.; Ramesha, K. Electrochim. Acta 2016, 219, 295. doi: 10.1016/j.electacta.2016.10.026

    71. [71]

      Liu, T.; Dai, C.; Jia, M.; Liu, D.; Bao, S.; Jiang, J.; Xu, M.; Li, C. M. ACS Appl. Mater. Inter. 2016, 8, 16063. doi: 10.1021/acsami.6b04060

    72. [72]

      Zhou, X.; Gao, P.; Sun, S.; Bao, D.; Wang, Y.; Li, X.; Wu, T.; Chen, Y.; Yang, P. Chem. Mater. 2015, 27, 6730. doi: 10.1021/acs.chemmater.5b02753

    73. [73]

      Liu, T.; Zhang, Y.; Hou, J.; Lu, S.; Jiang, J.; Xu, M. RSC Adv. 2015, 5, 84038. doi: 10.1039/C5RA14979G

    74. [74]

      Wang, X.; Zhang, Z.; Qu, Y.; Wang, G.; Lai, Y.; Li, J. J. Power Sources 2015, 287, 247. doi: 10.1016/j.jpowsour.2015.04.052

    75. [75]

      Li, X.; Liang, J.; Hou, Z.; Zhang, W.; Wang, Y.; Zhu, Y.; Qian, Y. Adv. Funct. Mater. 2015, 25, 5229. doi: 10.1002/adfm.201501956

    76. [76]

      Peng, X.; Wang, L.; Zhang, X.; Gao, B.; Fu, J.; Xiao, S.; Huo, K.; Chu, P. K. J. Power Sources 2015, 288, 214. doi: 10.1016/j.jpowsour.2015.04.124

    77. [77]

      Yi, Z.; Yuan, L.; Sun, D.; Li, Z.; Wu, C.; Yang, W.; Wen, Y.; Shan, B.; Huang, Y. J. Mater. Chem. A 2015, 3, 3059. doi: 10.1039/C4TA06141A

    78. [78]

      Lee, J. T.; Kim, H.; Oschatz, M.; Lee, D.; Wu, F.; Lin, H.; Zdyrko, B.; Cho, W. I.; Kaskel, S.; Yushin, G. Adv. Energy Mater. 2015, 5, 1400981. doi: 10.1002/aenm.201400981

    79. [79]

      Luo, C.; Wang, J.; Suo, L.; Mao, J.; Fan, X.; Wang, C. J. Mater. Chem. A 2015, 3, 555. doi: 10.1039/C4TA04611K

    80. [80]

      Zhang, Z.; Yang, X.; Guo, Z.; Qu, Y.; Li, J.; Lai, Y. J. Power Sources 2015, 279, 88. doi: 10.1016/j.jpowsour.2015.01.001

    81. [81]

      Jia, M.; Mao, C.; Niu, Y.; Hou, J.; Liu, S.; Bao, S.; Jiang, J.; Xu, M.; Lu, Z. RSC Adv. 2015, 5, 96146. doi: 10.1039/C5RA19000B

    82. [82]

      Zhang, H.; Yu, F.; Kang, W.; Shen, Q. Carbon 2015, 95, 354. doi: 10.1016/j.carbon.2015.08.050

    83. [83]

      Guo, J.; Wen, Z.; Wang, Q.; Jin, J.; Ma, G. J. Mater. Chem. A 2015, 3, 19815. doi: 10.1039/C5TA04510J

    84. [84]

      Qu, Y.; Zhang, Z.; Lai, Y.; Liu, Y.; Li, J. Solid State Ionics 2015, 274, 71. doi: 10.1016/j.ssi.2015.03.007

    85. [85]

      Yang, J.; Gao, H.; Ma, D.; Zou, J.; Lin, Z.; Kang, X.; Chen, S. Electrochim. Acta 2018, 264, 341. doi: 10.1016/j.electacta.2018.01.105

    86. [86]

      Suo, L.; Zhu, Y.; Han, F.; Gao, T.; Luo, C.; Fan, X.; Hu, Y.; Wang, C. Nano Energy 2015, 13, 467. doi: 10.1016/j.nanoen.2015.02.021

    87. [87]

      Wu, F.; Lee, J. T.; Zhao, E.; Zhang, B.; Yushin, G. ACS Nano 2015, 10, 1333. doi: 10.1021/acsnano.5b06716

    88. [88]

      Zhou, G.; Paek, E.; Hwang, G. S.; Manthiram, A. Adv. Energy Mater. 2016, 6, 1501355. doi: 10.1002/aenm.201501355

    89. [89]

      Hwa, Y.; Zhao, J.; Cairns, E. J. Nano Lett. 2015, 15, 3479. doi: 10.1021/acs.nanolett.5b00820

    90. [90]

      Wang, L.; Wang, Y.; Xia, Y. Y. Energy Environ. Sci. 2015, 8, 1551. doi: 10.1039/C5EE00058K

    91. [91]

      Wu, F.; Lee, J. T.; Xiao, Y.; Yushin, G. Nano Energy 2016, 27, 238. doi: 10.1016/j.nanoen.2016.07.012

    92. [92]

      Zhang, Z.; Jiang, S.; Lai, Y.; Li, J.; Song, J.; Li, J. J. Power Sources 2015, 284, 95. doi: 10.1016/j.jpowsour.2015.03.019

    93. [93]

      Li, X.; Liang, J.; Zhang, K.; Hou, Z.; Zhang, W.; Zhu, Y.; Qian, Y. Energy Environ. Sci. 2015, 8, 3181. doi: 10.1039/c5ee01470k

    94. [94]

      罗雯, 黄磊, 关豆豆, 贺汝涵, 李枫, 麦立强.物理化学学报, 2016, 32, 1999. doi: 10.3866/PKU.WHXB201605032Luo, W.; Huang, L.; Guan, D. D.; He, R. H.; Li, F.; Mai, L. Q. Acta Phys. -Chim. Sin. 2016, 32, 1999. doi: 10.3866/PKU.WHXB201605032

    95. [95]

      Wei, Y.; Tao, Y.; Kong, Z.; Liu, L.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Energy Storage Mater. 2016, 5, 171. doi: 10.1016/j.ensm.2016.07.005

    96. [96]

      Sun, F.; Cheng, H.; Chen, J.; Zheng, N.; Li, Y.; Shi, J. ACS Nano 2016, 10, 8289. doi: 10.1021/acsnano.6b02315

    97. [97]

      Li, Z.; Zhang, J.; Guan, B. Y.; Lou, X. W. D. Angew. Chem. Int. Ed. 2017, 56, 16003. doi: 10.1002/anie.201709176

    98. [98]

      Li, Z.; Zhang, J.; Wu, H. B.; Lou, X. W. D. Adv. Energy Mater. 2017, 7, 1700281. doi: 10.1002/aenm.201700281

    99. [99]

      Choi, D. S.; Yeom, M. S.; Kim, Y.; Kim, H.; Jung, Y. Inorg. Chem. 2018, 57, 2149. doi: 10.1021/acs.inorgchem.7b03001

    100. [100]

      Xu, G.; Ma, T.; Sun, C.; Luo, C.; Cheng, L.; Ren, Y.; Heald, S. M.; Wang, C.; Curtiss, L.; Wen, J.; et al. Nano Lett. 2016, 16, 2663. doi: 10.1021/acs.nanolett.6b00318

    101. [101]

      Cui, Y.; Abouimrane, A.; Sun, C.; Ren, Y.; Amine, K. Chem. Commun. 2014, 50, 5576. doi: 10.1039/C4CC00934G

    102. [102]

      Luo, C.; Xu, Y.; Zhu, Y.; Liu, Y.; Zheng, S.; Liu, Y.; Langrock, A.; Wang, C. ACS Nano 2013, 7, 8003. doi: 10.1021/nn403108w

    103. [103]

      Yang, C.; Xin, S.; Yin, Y.; Ye, H.; Zhang, J.; Guo, Y. Angew. Chem. Int. Ed. 2013, 52, 8363. doi: 10.1002/anie.201303147

    104. [104]

      Wu, C.; Yuan, L.; Li, Z.; Yi, Z.; Zeng, R.; Li, Y.; Huang, Y. Sci. Chi. Mater. 2015, 58, 91. doi: 10.1007/s40843-015-0030-9

    105. [105]

      Ye, H.; Yin, Y.; Zhang, S.; Shi, Y.; Liu, L.; Zeng, X.; Wen, R.; Guo, Y.; Wan, L. Nano Energy 2017, 36, 411. doi: 10.1016/j.nanoen.2017.04.056

    106. [106]

      Zhou, Y.; Li, Z.; Lu, Y. Nano Energy 2017, 39, 554. doi: 10.1016/j.nanoen.2017.07.038

    107. [107]

      Zhang, Z.; Zhang, Z.; Zhang, K.; Yang, X.; Li, Q. RSC Adv. 2014, 4, 15489. doi: 10.1039/C4RA00446A

    108. [108]

      Lee, J. T.; Kim, H.; Nitta, N.; Eom, K.; Lee, D.; Wu, F.; Lin, H.; Zdyrko, B.; Cho, W. I.; Yushin, G. J. Mater. Chem. A 2014, 2, 18898. doi: 10.1039/C4TA04467C

    109. [109]

      Gu, X.; Tong, C.; Rehman, S.; Liu, L.; Hou, Y.; Zhang, S. ACS Appl. Mater. Inter. 2016, 8, 15991. doi: 10.1021/acsami.6b02378

    110. [110]

      Fang, R.; Zhou, G.; Pei, S.; Li, F.; Cheng, H. M. Chem. Commun. 2015, 51, 3667. doi: 10.1039/c5cc00089k

  • 加载中
计量
  • PDF下载量:  50
  • 文章访问数:  2010
  • HTML全文浏览量:  610
文章相关
  • 发布日期:  2019-07-15
  • 收稿日期:  2018-06-28
  • 接受日期:  2018-08-06
  • 修回日期:  2018-08-06
  • 网络出版日期:  2018-07-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章