Perspective: Chemical Information Encoded in Electron Density

Julia CONTRERAS-GARCíA Weitao YANG

Citation:  CONTRERAS-GARCíA Julia, YANG Weitao. Perspective: Chemical Information Encoded in Electron Density[J]. Acta Physico-Chimica Sinica, 2018, 34(6): 567-580. doi: 10.3866/PKU.WHXB201801261 shu

Perspective: Chemical Information Encoded in Electron Density

    作者简介: Dr. Contreras-García completed her Ph.D. studies in University of Oviedo with a National grant. She then went to Duke University as a Fulbright student, under the advisory of Prof. Yang. After another year of postdoctoral studies with Andreas Savin, she obtained her position at CNRS attached to Sorbonne University. She is interested in theories of chemical bonding in Euclidian space and the application to high pressure. In 2013 she received the European Award for young researchers in High Pressure;

    通讯作者: CONTRERAS-GARCíAJulia, contrera@lct.jussieu.fr
摘要: In this perspective, we review the chemical information encoded in electron density and other ingredients used in semilocal functionals. This information is usually looked at from the functional point of view: the exchange density or the enhancement factor are discussed in terms of the reduced density gradient. However, what parts of a molecule do these 3D functions represent? We look at these quantities in real space, aiming to understand the electronic structure information they encode and provide an insight from the quantum chemical topology (QCT). Generalized gradient approximations (GGAs) provide information about the presence of chemical interactions, whereas meta-GGAs can differentiate between the different bonding types. By merging these two techniques, we show new insight into the failures of semilocal functionals owing to three main errors: fractional charges, fractional spins, and non-covalent interactions. We build on simple models. We also analyze the delocalization error in hydrogen chains, showing the ability of QCT to reveal the delocalization error introduced by semilocal functionals. Then, we show how the analysis of localization can help understand the fractional spin error in alkali atoms, and how it can be used to correct it. Finally, we show that the poor description of GGAs of isodesmic reactions in alkanes is due to 1, 3-interactions.

English

    1. [1]

      Perdew, J. P.; Schmidt, K. AIP Conference Proceedings 2001, 577, 1. doi: 10.10631.1390175

    2. [2]

      Popelier P. L. A.. Quantum Chemical Topology in "The Chemical Bond Ⅱ: 100 Years Old and Getting Stronger"; Mingos, D., Michael P.., Eds.[J]. Springer: Cham, Switzerland, 2016, :  .

    3. [3]

      Bader R. F. W.. Atoms in Molecules: A Quantum Theory[J]. Oxford Science Publications: Oxford, UK, 1990, :  .

    4. [4]

      Matta C. F., Boyd R. J.. An Introduction to the Quantum Theory of Atoms in Molecules[J]. Wiley-VCH Verlag GmbH & Co.: Hoboken, NJ, US, 2007, :  . doi: 10.1002/9783527610709.ch1

    5. [5]

      Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397. doi: 10.1063i/1.458517

    6. [6]

      Silvi, B.; Savin, A. Nature 1994, 371, 683. doi: 10.1038/371683a0

    7. [7]

      Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem. Int. Ed. 1997, 36, 1808. doi: 10.1002/anie.199718081

    8. [8]

      Schmider, H. L.; Becke, A. D. J. Mol. Struct. Theochem. 2000, 527, 51. doi: 10.1016/S0166-1280(00)00477-2

    9. [9]

      Schmider, H. L.; Becke, A. D. J. Chem. Phys. 2002, 116, 3184. doi: 10.1063/1.1431271

    10. [10]

      Hohenberg, P.; Kohn, W. Phys. Rev B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864

    11. [11]

      Spackman, M.; Maslen, E. J. Phys. Chem. 1986, 90, 2020. doi: 10.1021/j100401a010

    12. [12]

      Gunnarsson, O.; Lunqvist, B. I. Phys. Rev. B 1976, 13, 4274. doi: 10.1103/PhysRevB.13.4274

    13. [13]

      Becke, A. D. Phys. Rev. A. 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    14. [14]

      Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244

    15. [15]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    16. [16]

      Sahni, V.; Gruenebaum, J.; Perdew, J. P. Phys. Rev. B 1982, 26, 4371. doi: 10.1103/PhysRevB.26.4371

    17. [17]

      Pearson, E. W.; Gordon, R. G. J. Chem. Phys. 1985, 82, 881. doi: 10.1063/1.448516

    18. [18]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.78.1396

    19. [19]

      Zupan, A.; Perdew, J. P.; Burke, K.; Causá, M. Int. J. Quantum Chem. 1997, 61, 835. doi: 10.1002/(SICI)1097-461X(1997)61:5<835::AID-QUA9>3.0.CO;2-X

    20. [20]

      Zupan, A.; Burke, K.; Ernzerhof, M.; Perdew, J. P. J. Chem. Phys. 1997, 106, 10184. doi: 10.1063/1.474101

    21. [21]

      Tognetti, V.; Cortona, P.; Adamo, C. J. Chem. Phys. 2008, 128, 034101. doi: 10.1063/1.2816137

    22. [22]

      Boto, R. A.; Contreras-García, J.; Tierny, J.; Piquemal, J. P. Mol. Phys. 2015, 114, 1. doi: 10.1080/00268976.2015.1123777

    23. [23]

      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498. doi: 10.1021/ja100936w

    24. [24]

      Lane, J. R.; Contreras-García, J.; Piquemal, J. P.; Miller, B. J.; Kjaergaard, H. G. J. Chem. Theory Comp. 2013, 9, 3263. doi: 10.1021/ct400420r

    25. [25]

      del Campo, J. M.; Gázquez, J. L.; Alvarez-Mendez, R. J.; Vela, A. Int. J. Quantum Chem. 2012, 112, 3594. doi: 10.1002/qua.24241

    26. [26]

      Boto, R. A.; Piquemal, J. P.; Contreras-García, J. Theor. Chem. Acc. 2017, 136, 139. doi: 10.1007/s00214-017-2169-9

    27. [27]

      Arfken G.. Mathematical Methods for Physicists[J]. Academic Press: Orlando, FL, USA, 1985, :  .

    28. [28]

      Bader, R. F. W.; Essén, H. J. Chem. Phys. 1984, 80, 1943. doi: 10.1063/1.446956

    29. [29]

      Slater, J. C. J. Chem. Phys. 1933, 1, 687. doi: 10.1063/1.1749227

    30. [30]

      Silvi, B. J. Phys. Chem. A 2003, 107, 3081. doi: 10.1021/jp027284p

    31. [31]

      Kohout, M.; Pernal, K.; Wagner, F. R.; Grin, Y. Theor. Chem. Acc. 2005, 113, 287. doi: 10.1007/s00214-005-0671-y

    32. [32]

      Becke, A. D. J. Chem. Phys. 2000, 112, 4020. doi: 10.1063/1.480951

    33. [33]

      Contreras-García, J.; Recio, J. M. Theor. Chem. Acc. 2011, 128, 411. doi: 10.1007/s00214-010-0828-1

    34. [34]

      Contreras-García, J.; Martin Pendás, A.; Silvi, B.; Recio, J. M. Phys. Chem. B 2009, 113, 1068. doi: 10.1021/jp8069546

    35. [35]

      Kohout, M.; Savin, A. Int. J. Quantum Chem. 1996, 60, 875. doi: 10.1002/(SICI)1097−461X(1996)60:4<875::AIDQUA10>3.0.CO;2-4

    36. [36]

      Sun, J.; Perdew, J. P.; Ruzsinszky, A. Proc. Natl. Acad. Sci. USA 2015, 112, 685. doi: 10.1073/pnas.1423145112

    37. [37]

      Philipsen, P. H. T.; Baerends, E. J. Phys. Rev. B 1996, 54, 5326. doi: 10.1103/PhysRevB.54.5326

    38. [38]

      Sun, J.; Xiao, B.; Fang, Y.; Haunschild, R.; Hao, P.; Ruzsinszky, A.; Csonka, G. I.; Scuseria, E.; Perdew, J. P. Phys. Rev. Lett. 2013, 111, 106401. doi: 10.1103/PhysRevLett.111.106401

    39. [39]

      Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. doi: 10.1063/1.2370993

    40. [40]

      Sun, J.; Haunschild, R.; Xiao, B.; Bulik, I. W.; Scuseria, G. E.; Perdew, J. P. J. Chem. Phys. 2013, 138, 044113. doi: 10.1063/1.4789414

    41. [41]

      Tao, J; Perdew, J. P.; Starorerov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. doi: 10.1103/PhysRevLett.91.146401

    42. [42]

      Johnson, E. R.; Becke, A. D.; Sherrill, C. D.; DiLabio, G. A. J. Chem. Phys. 2009, 131, 034111. doi: 10.1063/1.3177061

    43. [43]

      Sun, J.; Remsing, R. C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Nat. Chem. 2016, 8, 831. doi: 10.1038/nchem.2535

    44. [44]

      Car, R. Nat. Chem. 2016, 8, 820. doi: 10.1038/nchem.2605

    45. [45]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Science 2008, 321, 792. doi: 10.1126/science.1158722

    46. [46]

      Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2008, 100, 146401. doi: 10.1103/PhysRevLett.100.146401

    47. [47]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Phys. Rev. B 2008, 77, 115123. doi: 10.1103/PhysRevB.77.115123

    48. [48]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. J. Chem. Phys. 2008, 129, 121104. doi: 10.1063/1.2987202

    49. [49]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    50. [50]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    51. [51]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    52. [52]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. J. Chem. Phys. 2007, 126, 191109. doi: 10.1063/1.2741248

    53. [53]

      Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011

    54. [54]

      Zheng, X.; Liu, M.; Johnson, E. R.; Contreras-García, J; Yang, W. J. Chem. Phys. 2012, 137, 214106. doi: 10.1063/1.4768673

    55. [55]

      Yang, W.; Zhang, Y.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/physrevlett.84.5172

    56. [56]

      Perdew, J. P.; Ruzsinszky, A.; Constantin, L. A.; Sun, J.; Csonka, G. I. J. Chem. Theory Comput. 2009, 5, 902. doi: 10.1021/ct800531s

    57. [57]

      Ruzsinszky, A.; Perdew, J. P.; Csonka, G. I. J. Phys. Chem. A 2005, 109, 11006. doi: 10.1021/jp0534479

    58. [58]

      Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2009, 102, 066403. doi: 10.1103/PhysRevLett.102.066403

    59. [59]

      Cuevas-Saavedra, R.; Chakraborty, D.; Rabi, S.; Cardenas, C.; Ayers, P. W. J. Chem. Theory Comp. 2012, 8, 4081. doi: 10.1021/ct300325t

    60. [60]

      Yang, D. X.; Patel, A. H. G.; Miranda-Quintana, R. A.; Heidar-Zadeh, F.; González-Espinoza, C. E.; Ayers, P. W. J. Chem. Phys. 2016, 145, 031102. doi: 10.1063/1.4958636

    61. [61]

      Becke, A. D. J. Chem. Phys. 2003, 119, 2972. doi: 10.1063/1.1589733

    62. [62]

      Becke, A. D. J. Chem. Phys. 2005, 122, 064101. doi: 10.1063/1.1844493

    63. [63]

      Dickson, R. M.; Becke, A. D. J. Chem. Phys. 2005, 123, 111101. doi: 10.1063/1.2035587

    64. [64]

      Johnson, E. R.; Contreras-García, J. J. Chem. Phys. Commun. 2011, 135, 081103. doi: 10.1063/1.3630117

    65. [65]

      Shi, Z.; Boyd, R. J. J. Chem. Phys. 1988, 88, 4375. doi: 10.1063/1.454711

    66. [66]

      Krukau, A. V.; Scuseria, G. E.; Perdew, J. P.; Savin, A. J. Chem. Phys. 2008, 129, 124103. doi: 10.1063/1.2978377

    67. [67]

      Johnson, E. R.; Mori-Sánchez, P.; Cohen, A. J.; Yang, W. J. Chem. Phys. 2008, 129, 204112. doi: 10.1063/1.3021474

    68. [68]

      Armstrong, A.; Boto, R. A.; Dingwall, P.; Contreras-García, J.; Harvey, M. J.; Mason, N.; Rzepa, H. R. Chem. Sci. 2014, 5, 2057. doi: 10.1039/C3SC53416B

    69. [69]

      Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. Org. Lett. 2006, 8, 3631. doi: 10.1021/ol061016i

    70. [70]

      Wodrich, M. D.; Wannere, C. S.; Mo, Y.; Jarowski, P. D.; Houk, K. N.; Schleyer, P. v. R Chem. Eur. J. 2007, 13, 7731. doi: 10.1002/chem.200700602

    71. [71]

      Song, J. W.; Tsuneda, T.; Sato, T.; Hirao, K. Org. Lett. 2010, 12, 1440. doi: 10.1021/ol100082z

    72. [72]

      Grimme, S. Org. Lett. 2010, 12, 4670. doi: 10.1021/ol1016417

    73. [73]

      Steinmann, S. N.; Wodrich, M. D.; Corminboeuf, C. Theor. Chem. Acta 2010, 127, 429. doi: 10.1007/s00214-010-0818-3

    74. [74]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    75. [75]

      Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Phys. Rev. Lett. 2008, 100, 136406. doi: 10.1103/PhysRevLett.100.136406

    76. [76]

      Grimme, S. Angew. Chem. Int. Ed. 2006, 45, 4460. doi: 10.1002/anie.200600448

    77. [77]

      Grimme, S.; Steinmetz, M.; Korth, M. J. Org. Chem. 2007, 72, 2118. doi: 10.1021/jo062446p

    78. [78]

      Karton, A.; Gruzman, D.; Martin, J. M. L. J. Phys. Chem. A 2009, 113, 8434. doi: 10.1021/jp904369h

    79. [79]

      Shamov, G. A.; Budzelaar, H. M.; Schreckenbach, G. J. Chem. Theory Comput. 2010, 6, 477. doi: 10.1021/ct9005135

    80. [80]

      Csonka, G. I.; Ruzsinszky, A.; Perdew, J. P.; Grimme, S. J. Chem. Theory Comput. 2008, 4, 888. doi: 10.1021/ct800003n

    81. [81]

      Brittain, D. R. B.; Lin, C. Y.; Gilbert, A. T. B.; Izgorodina, E. I.; Gill, P. M. W.; Coote, M. L. Phys. Chem. Chem. Phys. 2009, 11, 1138. doi: 10.1039/b818412g

    82. [82]

      Becke, A. D.; Dickson, R. M. J. Chem. Phys. 1990, 92, 3610. doi: 10.1063/1.457869

    83. [83]

      Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114, 108. doi: 10.1063/1.1321305

    84. [84]

      Johnson, E. R.; Contreras-García, J.; Yang, W. J. Chem. Theor. Comp. 2012, 8, 2626. doi: 10.1021/ct300412g

    85. [85]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495

    86. [86]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision B. 01; Gaussian, Inc.: Wallingford, CT, USA, 2010.

    87. [87]

      Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.; Yang, W. J. Chem. Theory Comput. 2011, 7, 625. doi: 10.1021/ct100641a

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  621
  • HTML全文浏览量:  118
文章相关
  • 发布日期:  2018-06-15
  • 收稿日期:  2017-11-22
  • 接受日期:  2016-01-15
  • 修回日期:  2018-01-15
  • 网络出版日期:  2016-06-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章