Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters

László VON SZENTPÁLY

Citation:  VON SZENTPÁLY László. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. Acta Physico-Chimica Sinica, 2018, 34(6): 675-682. doi: 10.3866/PKU.WHXB201801021 shu

Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters

    通讯作者: VON SZENTPÁLYLászló, lszentpaly@yahoo.com
摘要: The addition of electrons to form gas-phase multiply charged anions (MCAs) normally requires sophisticated experiments or calculations.In this work, the factors stabilizing the MCAs, the maximum electron uptake of gas-phase molecules, X, and the electronic stability of MCAs XQ-, are discussed. The drawbacks encountered when applying computational and/or conceptual density functional theory (DFT) to MCAs are highlighted. We develop and test a different model based on the valence-state concept. As in DFT, the electronic energy, E(N, vex), is a continuous function of the average electron number, N, and the external potential, vex, of the nuclei. The valence-state-parabola is a second-order polynomial that allows extending E(N, vex) to dianions and higher MCAs. The model expresses the maximum electron acceptance, Qmax, and the higher electron affinities, AQ, as simple functions of the first electron affinity, A1, and the ionization energy, I, of the “ancestor” system. Thus, the maximum electron acceptance is Qmax, calc = 1 + 12A1/7(I -A1). The ground-state parabola model of the conceptual DFT yields approximately half of this value, and it is termed Qmax, GS = ${}^{1}\!\!\diagup\!\!{}_{2}\; $ + A1/(I -A1). A large variety of molecules are evaluated including fullerenes, metal clusters, super-pnictogens, super-halogens (OF3), super-alkali species (OLi3), and neutral or charged transition-metal complexes, ABmLn0/+/-. The calculated second electron affinity A2, calc = A1-(7/12)(I -A1) is linearly correlated to the literature references A2, lit with a correlation coefficient R = 0.998. A2 or A3 values are predicted for further 24 species. The appearance sizes, nap3-, of triply charged anionic clusters and fullerenes are calculated in agreement with the literature.

English

    1. [1]

      Pearson, R. G. Chemical Hardness; Wiley-VCH: Weinheim, Germany, 1997. doi: 10.1002/3527606173

    2. [2]

      Sommerfeld, T.; Weber, R. J. J. Phys. Chem. A 2011, 115, 6675. doi: 10.1021/jp202817d

    3. [3]

      Walters, T.; Wang, X. B.; Wang, L. -S. Coord. Chem. Rev. 2007, 251, 474. doi: 10.1016/j.ccr.2006.04.010

    4. [4]

      Herlert, A.; Kruckeberg, S.; Schweikhard, L.; Vogel, M.; Walther, C. Phys. Scr 1999, T80, 200. doi: 10.1238/Physica.Topical.080a00200

    5. [5]

      Franzreb, K.; Wiliams, P. J. Chem. Phys. 2005, 123, 224312. doi: 10.1063/1.2136154

    6. [6]

      Walsh, N.; Martinez, F.; Marx, G., Schweikhard, L., Ziegler, F. J. Chem. Phys. 2010, 132, 014308. doi: 10.1063/1.3270153

    7. [7]

      Wong, A. Y.; Mamas, D. L.; Arnush, D. Phys. Fluids 1975, 18, 1489. doi: 10.1063/1.861034

    8. [8]

      Wang, X. B.; Wang, L. S. Photoelectron Spectroscopy of Multiply Charged Anions. In Annual Review Physical Chemistry; Annual Reviews Inc.: Palo Alto, CA, USA, 2009; Vol. 60, pp. 105-126. doi: 10.3866/PKU.WHXB201801021

    9. [9]

      Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125. doi: 10.1021/cr010203l

    10. [10]

      Tallgren, L. Acta Med. Scand. Suppl. 1980, 640, 1.

    11. [11]

      Lee, A.; Dawson, P. A.; Markovich, D. Int. J. Biochem. Cell Biol. 2005, 37, 1350. doi: 10.1016/j.biocel.2005.02.013

    12. [12]

      Ramanathan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Science 2001, 294, 2119. doi: 10.1126/science.1064034

    13. [13]

      Scheller, M. K.; Compton, R. N.; Cederbaum, L. S. Science 1995, 270, 1160. doi: 10.1126/science.270.5239.1160

    14. [14]

      Boldyrev, A. I.; Gutowski, M.; Simons, J. Acc. Chem. Res. 1996, 29, 497. doi: 10.1021/ar960147o

    15. [15]

      Dreuw, A.; Cederbaum, L. S. Chem. Rev. 2002, 102, 181. doi: 10.1021/cr0104227

    16. [16]

      Feuerbacher, S.; Cederbaum, L. S. J. Phys. Chem. A 2005, 109, 11401. doi: 10.1021/jp053305e

    17. [17]

      von Szentpály, L. J. Phys. Chem. A 2010, 114, 10891. doi: 10.1021/jp107177d

    18. [18]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989.

    19. [19]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. doi: 10.1021/ja00364a005

    20. [20]

      Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289. doi: 10.1021/cr200107z

    21. [21]

      Parr, R. G.; von Szentpály, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x

    22. [22]

      Bergmann, D.; Hinze, J. Angew. Chem. Int. Ed. 1996, 35, 150; with earlier references quoted therein. doi: 10.1002/anie.199601501

    23. [23]

      von Szentpály, L. J. Mol. Struct. THEOCHEM 1991, 233, 71. doi: 10.1016/0166-1280(91)85055-C

    24. [24]

      von Szentpály, L. Int. J. Quantum Chem. 2000, 76, 222. doi: 10.1002/(SICI)1097-461X(2000)76:2 < 222::AID-QUA11 > 3.0.CO; 2-6

    25. [25]

      Glasser, L.; von Szentpály, L. J. Am. Chem. Soc. 2006, 128, 12314. doi: 10.1021/ja063812p

    26. [26]

      Datta, D.; Shee, N. K.; von Szentpály, L. J. Phys. Chem. A 2013, 117, 200. doi: 10.1021/jp3103386

    27. [27]

      von Szentpály, L. J. Phys. Chem. A 2015, 119, 1715. doi: 10.1021/jp5084345

    28. [28]

      Sen, K. D.; Boehm, M. C.; Schmidt, P. C. Structure and Bonding; Springer-Verlag: Berlin, Germany, 1987; Vol. 66, p. 99.

    29. [29]

      Janak, J. F. Phys. Rev. B 1978, 18, 7165. doi: 10.1103/PhysRevB.18.7165

    30. [30]

      Jensen, F. J. Chem. Theory Comput. 2010, 6, 2736. doi: 10.1021/ct1003548

    31. [31]

      Kim, M. -C.; Sim, E.; Burke, K. J. Chem. Phys. 2011, 134, 171103. doi: 10.1063/1.3590364

    32. [32]

      Wade, K. Chem. Commun. 1971, 792. doi: 10.1039/c29710000792

    33. [33]

      Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. doi: 10.1021/ar00105a003

    34. [34]

      Zhao, T.; Zhou, J.; Wang, Q.; Jena, P. Angew. Chem. Int. Ed. 2017, 56, 13421. doi: 10.1002/anie.201706764.

    35. [35]

      Herlert, A.; Schweighardt, L. Int. J. Mass Spectrom. 2003, 229, 19. doi: 10.1016/S1387-3806(03)00251-3

    36. [36]

      Yannouleas, C.; Landman, U. Chem. Phys. Lett. 1993, 210, 437. doi: 10.1016/0009-2614(93)87050-D

    37. [37]

      de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611. doi: 10.1103/RevModPhys.65.611

    38. [38]

      Gutsev, G. L. Chem. Phys. Lett. 1991, 184, 305. doi: 10.1016/0009-2614(91)85128-J

    39. [39]

      Pernpointner, M.; Cederbaum, L. S. J. Chem. Phys. 2007, 126, 144310. doi: 10.1063/1.2721531

    40. [40]

      Wesendrup, R.; Schwerdtfeger, P. Inorg. Chem. 2001, 40, 3351. doi: 10.1021/ic010169t

    41. [41]

      Craciun, R.; Picone, D.; Long, R. T.; Li, S.; Dixon, D. A.; Peterson, K. A.; Christe, K. O. Inorg. Chem. 2010, 49, 1056. doi: 10.1021/ic901967h

    42. [42]

      Craciun, R.; Long, R. T.; Dixon, D. A.; Christe, K. O. J. Phys. Chem. A 2010, 114, 7571. doi: 10.1021/jp1022949

    43. [43]

      Macgregor, S.A.; Moock, K. H. Inorg. Chem. 1998, 37, 3284. doi: 10.1021/ic9605736

    44. [44]

      Seppelt, K. Chem. Rev. 2015, 115, 1296. doi: 10.1021/cr5001783

    45. [45]

      Pradhan, K.; Gutsev, G. L.; Weatherford, C. A.; Jena, P. J. Chem. Phys. 2011, 134, 144305. doi: 10.1063/1.3570578

    46. [46]

      Uzunova, E. L. J. Phys. Chem. A 2011, 115, 10665. doi: 10.1021/jp2034888

    47. [47]

      Zhou, M.; Andrews, L.; Ismail, N.; Marsden, C. J. Phys. Chem. 2000, 104, 5495. doi: 10.1021/jp000292q

    48. [48]

      Zein, S.; Ortiz, J. V. J. Chem. Phys. 2011, 135, 164307. doi: 10.1063/1.3636082

    49. [49]

      Zein, S.; Ortiz, J. V. J. Chem. Phys. 2012, 136, 224305. doi: 10.1063/1.4728073

    50. [50]

      Anusiewicz, I.; Freza, S.; Sikorska, C.; Skurski, P. Chem. Phys. Lett. 2010, 493, 234. doi: 10.1016/j.cplett.2010.05.058

    51. [51]

      Boltanina, O. V.; Ioffé, I. N.; Sidorov, L. N.; Seifert, G.; Vietze, K. J. Am. Chem. Soc. 2000, 122, 9745. doi: 10.1021/ja000734b

    52. [52]

      Hampe, O.; Neumaier, M.; Blom, M. N.; Kappes, M. M. Chem. Phys. Lett. 2002, 354, 303. doi: 10.1016/S0009-2614(02)00124-0

    53. [53]

      Wang, X. -B.; Woo, H. -K.; Yang, J.; Kappes, M. M.; Wang, L. -S. J. Phys. Chem. C 2007, 111, 17684. doi: 10.1021/jp0703861

    54. [54]

      Wang, X. -B.; Woo, H. -K.; Huang, X.; Kappes, M. M.; Wang, L. -S. Phys. Rev. Lett. 2006, 96, 143002. doi: 10.1103/PhysRevLett.96.143002

    55. [55]

      Nasibullaev, S. K.; Davletbaeva, G. D.; Vasil'ev, Z. V.; Nasibullayev, I. S. Fuller. Nanotub. Carbon Nanostruct. 2004, 12, 491. doi: 10.1081/FST-120027212

    56. [56]

      Wang, X. -B.; Chi, C.; Zhou, M.; Kuvychko, I. V.; Seppelt, K.; Popov, A. A.; Strauss, S. H., Boltalina, O.; Wang, L. -S. J. Phys. Chem. A 2010, 114, 1756. doi: 10.1021/jp9097364

    57. [57]

      Caddeo, C.; Malloci, G.; De Angelis, F.; Colombo, L.; Mattoni, A. Phys. Chem. Chem. Phys. 2012, 14, 14293. doi: 10.1039/c2cp42037f

    58. [58]

      Belau, L.; Wheeler, S. W.; Ticknor, B. W.; Ahmed, M.; Leone, S. R.; Allen, W. D., Schaefer, H. F.; Duncan, M. A. J. Am. Chem. Soc. 2007, 129, 10229. doi: 10.1021/ja072526q

    59. [59]

      Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1994, 100, 6614. doi: 10.1063/1.467071

    60. [60]

      Ortíz, J. V.; Zakrzewski, V. G. J. Chem. Phys. 1995, 102, 294. doi: 10.1063/1.469402

    61. [61]

      Sommerfeld, T. J. Phys. Chem. A 2000, 104, 8806. doi: 10.1021/jp0017590

    62. [62]

      Wang, J.; Yang, M.; Jellinek, J.; Wang, G. Phys. Rev. 2006, A74, 023202. doi: 10.1103/PhysRevA.74.023202

    63. [63]

      Kostko, O. Photoelectron Spectroscopy of Mass-selected Sodium, Coinage Metal and Divalent Metal Cluster Anions; Ph. D. Thesis, Universität Freiburg: Freiburg, Germany, 2007. www.freidok.uni-freiburg.de

    64. [64]

      Yannouleas, C.; Landman, U. Phys. Rev. B 2000, 61, R10587. doi: 10.1103/PhysRevB.61.15895

    65. [65]

      Berkowitz, J.; Lifshitz, G. J. Chem. Phys. 1968, 48, 4346. doi: 10.1063/1.1667997

    66. [66]

      Jin, Y.; Maroulis, G.; Kuang, X.; Ding, L.; Lu, C.; Wang, J.; Lv, J.; Zhang, C.; Ju, M. Phys. Chem. Chem. Phys. 2015, 17, 13590. doi: 10.1039/c5cp00728c

    67. [67]

      Zakrzewski, V. C.; von Niessen, W. Theor. Chim. Acta 1994, 88, 75. doi: 10.1007/BF01113735

    68. [68]

      Berghof, V; Sommerfeld, T; Cederbaum, L. S. J. Phys. Chem. A 1998, 102, 5100. doi: 10.1021/jp9808375

    69. [69]

      Kaplan, I. G.; Dolgounitcheva, O.; Watts, J. D.; Ortiz, J. V. J. Chem. Phys. 2002, 117, 3687. doi: 10.1063/1.1494801

    70. [70]

      Roy, D. R.; Chattaraj, P. K. J. Phys. Chem. A 2008, 112, 1612. doi: 10.1021/jp710820c

    71. [71]

      von Szentpály, L. J. Mol. Model 2017, 23, 217. doi: 10.1007/s00894-017-3383-z

    72. [72]

      Sabzyan, H.; Noorisafa, Z.; Keshavarz, E. Spectrochim. Acta A 2014, 117, 95. doi: 10.1016/j.saa.2013.07.111

    73. [73]

      Zakrzewski, V. G.; Dolgounitcheva, O.; Ortiz, J. V. J. Chem. Phys. 1996, 105, 5872. doi: 10.1063/1.472428

    74. [74]

      Zhu, G. -Z. Wang, L. -S. J. Chem. Phys. 2015, 143, 221102. doi: 10.1063/1.4937761

    75. [75]

      Nielsen, S. B.; Nielsen, M. B. J. Chem. Phys. 2003, 119, 10069. doi: 10.1063/1.1618216

    76. [76]

      Assadollahzadeh, B.; Thierfelder, C.; Schwerdtfeger, P. Phys. Rev. B 2008, 78, 245423. doi: 10.1103/PhysRevB.78.245423

    77. [77]

      Haynes, W. M.; Lide, R. D. Handbook of Chemistry and Physics, 92nd ed.; CRC Press: Boca Raton, FL, USA, 2011-2012.

    78. [78]

      Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Ion Energetics Data in NIST Chemistry Webbook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, Maryland, USA, 2015.

    79. [79]

      Richard, R. M.; Marshall, M. S.; Dolgounitcheva, O.; Ortiz, J. V.; Brédas, J. -L.; Marom, N.; Sherrill, C. D. J. Chem. Theory Comput. 2016, 12, 595. doi: 10.1021/acs.jctc.5b00875

    80. [80]

      Wang, X. B.; Wang, L. -S. J. Phys. Chem. A 2000, 104, 4429. doi: 10.1021/jp000362t

    81. [81]

      Gutsev, G. L.; Boldyrev, A. I. Mol. Phys. 1984, 53, 23. doi: 10.1080/00268978400102111

    82. [82]

      von Szentpály, L. J. Phys. Chem. A 2011, 115, 8528. doi: 10.1021/jp203319y

    83. [83]

      Walsh, N. Multiply-Negatively Charged Aluminum Clusters and Fullerenes; Ph. D. Thesis, Universität Greifswald, Greifswald, Germany, 2008. ub-ed.ub.unigreifswald.de/opus/volltexte/2008/.../ Diss_Walsh.pdf

    84. [84]

      Taylor, K. J.; Pettiette-Hall, C. L.; Chesnovsky, O.; Smalley, R. E. J. Chem. Phys. 1992, 96, 3319. doi: 10.1063/1.461927

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  395
  • HTML全文浏览量:  38
文章相关
  • 发布日期:  2018-06-15
  • 收稿日期:  2017-10-30
  • 接受日期:  2017-12-25
  • 修回日期:  2017-12-25
  • 网络出版日期:  2018-06-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章