Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions

Paul GEERLINGS Frank DE PROFT Stijn FIAS

Citation:  GEERLINGS Paul, DE PROFT Frank, FIAS Stijn. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Physico-Chimica Sinica, 2018, 34(6): 699-707. doi: 10.3866/PKU.WHXB201711221 shu

Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions

    通讯作者: GEERLINGSPaul, pgeerlin@vub.ac.be
摘要: In view of its use as reactivity theory, Conceptual Density Functional Theory (DFT), introduced by Parr et al., has mainly concentrated up to now on the E = E[N, v] functional. However, different ensemble representations can be used involving other variables also, such as ρ and µ. In this study, these different ensemble representations (E, , F, and R) are briefly reviewed. Particular attention is then given to the corresponding second-order (functional) derivatives, and their analogies with the second-order derivatives of thermodynamic state functions U, F, H, and G, which are related to each other via Legendre transformations, just as the DFT functionals (Nalewajski and Parr, 1982). Starting from an analysis of the convexity/concavity of the DFT functionals, for which explicit proofs are discussed for some cases, the positive/negative definiteness of the associated kernels is derived and a detailed comparison is made with the thermodynamic derivatives.The stability conditions in thermodynamics are similar in structure to the convexity/concavity conditions for the DFT functionals. Thus, the DFT functionals are scrutinized based on the convexity/concavity of their two variables, to yield the possibility of establishing a relationship between the three second-order reactivity descriptors derived from the considered functional. Considering two ensemble representations, F and , F is eliminated as it has two dependent (extensive) variables, N and ρ. For , on the other hand, which is concave for both of its intensive variables (µ and υ), an inequality is derived from its three second-order (functional) derivatives: the global softness, the local softness, and the softness kernel. Combined with the negative value of the diagonal element of the linear response function, this inequality is shown to be compatible with the Berkowitz-Parr relationship, which relates the functional derivatives of ρ with υ, at constant N and µ. This was recently at stake upon quantifying Kohn’s Nearsightedness of Electronic Matter. The analogy of the resulting inequality and the thermodynamic inequality for the G derivatives is highlighted. Potential research paths for this study are briefly addressed; the analogies between finite-temperature DFT response functions and their thermodynamic counterparts and the quest for analogous relationships, as derived in this paper, for DFT functionals that are analogues of entropy-dimensioned thermodynamic functions such as the Massieu function.

English

    1. [1]

      Parr, R. G.; Yang, W. Ann. Rev. Phys. Chem. 1995, 46, 701.doi: 10.1146/annurev.pc.46.100195.003413

    2. [2]

      Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AIDJCC13 > 3.0.CO; 2-A

    3. [3]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    4. [4]

      De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101, 1451. doi: 10.1021/cr9903205

    5. [5]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307

    6. [6]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    7. [7]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332

    8. [8]

      Gross, E. K. U.; Kohn, W. Phys. Rev. Lett. 1985, 55, 2850. doi: 10.1103/PhysRevLett.55.2850

    9. [9]

      Casida, M. E. Recent Advances in Density Functional Methods; Chong, D. P. Ed.; World Scientific Pub. Co. Inc.: Singapore, 1995; p. 155. http://www.whxb.pku.edu.cn/CN/abstract/abstract30109.shtml

    10. [10]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.

    11. [11]

      Ayers, P.W.; De Proft, F.; Borgoo, A.; Geerlings, P. J. Chem. Phys. 2007, 126, 224107. doi: 10.1063/1.2736697

    12. [12]

      Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1, 1228. doi: 10.1021/jz1002132

    13. [13]

      Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577

    14. [14]

      Fias, S.; Boisdenghien, Z.; Stuyver, T.; Audiffred, M.; Merino, G.; Geerlings, P.; De Proft, F. J. Phys. Chem. A 2013, 117, 3556. doi: 10.1021/jp401760j

    15. [15]

      Fias, S.; Geerlings, P.; Ayers, P.; De Proft, F. Phys. Chem. Chem. Phys. 2013, 15, 2882. doi: 10.1039/c2cp43612d

    16. [16]

      Boisdenghien, Z.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. J. Chem. Theory Comp. 2013, 9, 1007. doi: 10.1021/ct300861r

    17. [17]

      Yang, W.; Cohen, A. J.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2012, 136, 144110. doi: 10.1063/1.3701562

    18. [18]

      Boisenghien, Z.; Fias, S.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. Phys. Chem. Chem. Phys. 2014, 16, 14614. doi: 10.1039/c4cp01331j

    19. [19]

      Fias, S.; Boisdenghien, Z.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2014, 141, 184107. doi: 10.1063/1.4900513

    20. [20]

      Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc. Rev. 2014, 43, 4989. doi: 10.1039/c3cs60456j

    21. [21]

      Geerlings, P.; Boisdenghien, Z.; De Proft, F.; Fias, S. Theor. Chem. Acc. 2016, 135, 213. doi: 10.1007/s00214-016-1967-9

    22. [22]

      Stuyver, T.; Fias, S.; De Proft, F.; Fowler, P.; Geerlings, P. J. Chem. Phys. 2015, 142, 094103. doi: 10.1063/1.4913415

    23. [23]

      Nalewajski, R. F.; Parr, R. G. J. Chem. Phys. 1982, 77, 399. doi: 10.1063/1.443620

    24. [24]

      Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034

    25. [25]

      Senet, P. J. Chem. Phys. 1996, 105, 6471. doi: 10.1063/1.472498

    26. [26]

      Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2001, 123, 2007. doi: 10.1021/ja002966g

    27. [27]

      Ayers, P. W. Theor. Chem. Acc. 2001, 106, 271. doi: 10.1007/PL00012385

    28. [28]

      Liu, S.; Li, T.; Ayers, P. W. J. Chem. Phys. 2009, 131, 114106. doi: 10.1063/1.3231687

    29. [29]

      Yang, W.; Parr, R. Proc. Natl. Acad. Sci. USA 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723

    30. [30]

      Mendez, F.; Gazquez, J. L. J. Am. Chem. Soc. 1994, 116, 9298. doi: 10.1021/ja00099a055

    31. [31]

      Damoun, S.; Van de Woude, G.; Mendez, F.; Geerlings, P. J. Phys. Chem. 1997, 101, 886. doi: 10.1021/jp9611840

    32. [32]

      Geerlings, P.; De Proft, F. Int. J. Quantum Chem. 2000, 80, 227. doi: 10.1002/1097-461X(2000)80:2 < 227::AID-QUA17 > 3.3.CO; 2-E

    33. [33]

      Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039

    34. [34]

      Kohn, W. Phys. Rev. Lett. 1996, 76, 3168. doi: 10.1103/PhysRevLett.76.3168

    35. [35]

      Prodan, E.; Kohn, W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635. doi: 10.1073/pnas.0505436102

    36. [36]

      Fias, S.; Heidar-Zadeh, F.; Geerlings, P.; Ayers, P. W. Proc. Natl. Acad. Sci. USA 2017, 114, 11633. doi: 10.1073/pnas.1615053114

    37. [37]

      Berkowitz, M.; Ghosh, S. K.; Parr, R. J. Am. Chem. Soc. 1985, 107, 6811. doi: 10.1021/ja00310a011

    38. [38]

      Ghosh, S. K.; Berkowitz, M. J. Chem. Phys. 1985, 83, 2976. doi: 10.1063/1.449846

    39. [39]

      Ghosh, S. K. Chem. Phys. Lett. 1990, 172, 77. doi: 10.1016/0009-2614(90)87220-L

    40. [40]

      Harbola, M. K.; Chattaraj, P. K.; Parr, R. G. Isr. J. Chem. 1991, 31, 395. doi: 10.1002/ijch.v31.4

    41. [41]

      Langenaeker, W.; De Proft, F.; Geerlings, P. J. Phys. Chem. 1995, 99, 6424. doi: 10.1021/j100017a022

    42. [42]

      Chamorro, E.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2005, 123, 154104. doi: 10.1063/1.2072907

    43. [43]

      Torrent-Sucarrat, M.; Salvador, P.; Sola, M.; Geerlings, P. J. Comp. Chem. 2007, 28, 574. doi: 10.1002/jcc.20535

    44. [44]

      Chattaraj, P.; Roy, D. R.; Geerlings, P.; Torrent-Sucarrat, M. Theor. Chem. Acc. 2007, 118, 923. doi: 10.1007/s00214-007-0373-8

    45. [45]

      Polanco-Ramirez, C. A.; Franco-Perez, M.; Carmona-Espindola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/c7cp00691h

    46. [46]

      Liu, S.; Parr, R. G. J. Chem. Phys. 1997, 106, 5578. doi: 10.1063/1.473580

    47. [47]

      Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243. doi: 10.1002/qua.560240302

    48. [48]

      Eschrig, H. The Fundamentals of Density Functional Theory; Teubner: Stuttgart-Leipzig, Germany, 1996. https://link.springer.com/content/pdf/bfm:978-3-322-97620-8/1.pdf

    49. [49]

      Kvaal, S.; Ekstrom, U.; Teale, A. M.; Helgaker, T. J. Chem. Phys. 2014, 140, 18A518. doi: 10.1063/1.4867005

    50. [50]

      Perdew, J.; Parr, R.; Levy, M.; Balduz, J. L. J. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    51. [51]

      Fias, S. ; Geerlings, P. ; De Proft, F. ; Ayers, P. W. in preparation.

    52. [52]

      Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028

    53. [53]

      Nagy, A.; Parr, R. G. Proc. Indian Acad. Sci. 1994, 106, 217. doi: 10.1007/BF02840745

    54. [54]

      Nagy, A.; Parr, R. G. J. Mol. Struct. THEOCHEM 2000, 501–502, 101. doi: 10.1016/S0166-1280[99]00418-2

    55. [55]

      Nagy, A. Int. J. Quantum Chem. 2017, 117, e25396. doi: 10.1002/qua.25396

    56. [56]

      Callen, H. B. Thermodynamics and an Introduction to Thermostatistics; John Wiley: New York, NY, USA, 1985. http://www.oalib.com/references/13135886

    57. [57]

      Prigogine, I.; Defay, R. Chemical Thermodynamics; Longman: London, UK, 1954. https://www.researchgate.net/publication/223991489_On_the_theoretical_determination_of_the_Prigogine-Defay_ratio_in_glass_transition

    58. [58]

      Berry, R. S.; Rice, S. A.; Ross, J. Physical Chemistry; Wiley: New York, NY, USA, 1980.

    59. [59]

      Cardenas, C.; Echegaray, E.; Chakraborty, D.; Anderson, J. S. M.; Ayers, P. W. J. Chem. Phys. 2009, 130, 244105. doi: 10.1063/1.3151599

    60. [60]

      Ayers, P. W. Phys. Rev. A 2006, 73, 012513. doi: 10.1103/PhysRevA.73.012513

    61. [61]

      Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422

    62. [62]

      Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  363
  • HTML全文浏览量:  26
文章相关
  • 发布日期:  2018-06-15
  • 收稿日期:  2017-09-11
  • 接受日期:  2017-11-10
  • 修回日期:  2017-11-03
  • 网络出版日期:  2017-06-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章