Citation:  GONZÁLEZ Marco Martínez, CÁRDENAS Carlos, RODRÍGUEZ Juan I., LIU Shubin, HEIDAR-ZADEH Farnaz, MIRANDA-QUINTANA Ramón Alain, AYERS Paul W.. Quantitative Electrophilicity Measures[J]. Acta Physico-Chimica Sinica, 2018, 34(6): 662-674. doi: 10.3866/PKU.WHXB201711021 shu

Quantitative Electrophilicity Measures

    通讯作者: MIRANDA-QUINTANARamón Alain, ramirandaq@gmail.com
    AYERSPaul W., ayers@mcmaster.ca
  • 基金项目:

    CC acknowledges support by FONDECYT (1140313), Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807, and project RC-130006 CILIS; Chile. PWA acknowledges support from NSERC, the Canada Research Chairs, and Compute Canada; Canada

摘要: Quantitative correlation of several theoretical electrophilicity measures over different families of organic compounds are examined relative to the experimental values of Mayr et al. Notably, the ability to predict these values accurately will help to elucidate the reactivity and selectivity trends observed in charge-transfer reactions. A crucial advantage of this theoretical approach is that it provides this information without the need of experiments, which are often demanding and time-consuming. Here, two different types of electrophilicity measures were analyzed. First, models derived from conceptual density functional theory (c-DFT), including Parr’s original proposal and further generalizations of this index, are investigated. For instance, the approaches of Gázquez et al. and Chamorro et al. are considered, whereby it is possible to distinguish between processes in which a molecule gains or loses electrons. Further, we also explored two novel electrophilicity definitions. On one hand, the potential of environmental perturbations to affect electron incorporation into a system is analyzed in terms of recent developments in c-DFT. These studies highlight the importance of considering the molecular surroundings when a consistent description of chemical reactivity is needed. On the other hand, we test a new definition of electrophilicity that is free from inconsistencies (so-called thermodynamic electrophilicity). This approach is based on Parr’s pioneering insights, though it corrects issues present in the standard working expression for the calculation of electrophilicity. Additionally, we use machine-learning tools (i.e., symbolic regression) to identify the models that best fit the experimental values. In this way, the best possible description of the electrophilicity values in terms of different electronic structure quantities is obtained. Overall, this straightforward approach enables one to obtain good correlations between the theoretical and experimental quantities by using the simple, yet powerful, interpretative advantage of c-DFT methods. In general, we observed that the correlations found at the HF/6-31G(d) level of theory are of semi-quantitative value. To obtain more accurate results, we showed that working with families of compounds with similar functional groups is indispensable.

English

    1. [1]

      Miller, B. Advanced Organic Chemistry: Reactions and Mechanisms; Prentice-Hall: Upper Saddle River, NJ, USA, 1998.doi: 10.1021/ed075p1558

    2. [2]

      March, J. Advanced Organic Chemistry; Wiley-Interscience: New York, NY, USA, 1992. doi: 10.1002/0470084960

    3. [3]

      Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.doi: 10.1021/ar020094c

    4. [4]

      Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; et al. J. Am. Chem. Soc. 2001, 123, 9500. doi: 10.1021/ja010890y

    5. [5]

      Mayr, H.; Patz, M. Angew. Chem. Int. Ed. 1994, 33, 938.doi: 10.1002/anie.199409381

    6. [6]

      Mayr, H.; Ofial, A. R. J. Phys. Org. Chem. 2008, 21, 584.doi: 10.1002/poc.1325

    7. [7]

      Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2005, 77, 1807.doi: 10.1351/pac200577111807

    8. [8]

      Liu, S. B. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 179.

    9. [9]

      Chattaraj, P. K.; Giri, S. Ann. Rep. Prog. Chem. C 2009, 105, 13.doi: 10.1039/B802832J

    10. [10]

      Chattaraj, P. K.; Giri, S.; Duley, S. Chem. Rev. 2011, 111, PR43.doi: 10.1021/cr100149p

    11. [11]

      Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl. Acad. Sci. USA 1998, 95, 11578. doi: 10.1073/pnas.95.20.11578

    12. [12]

      Parr, R. G.; von Szentpály, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922. doi: 10.1021/ja983494x

    13. [13]

      Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AID-JCC13 > 3.0.CO; 2-A

    14. [14]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989. http://www.oalib.com/references/13102733

    15. [15]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029

    16. [16]

      Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Modern Charge Density Analysis; Gatti, C., Macchi, P., Eds.; Springer: New York, NY, USA, 2012; p. 715. doi: 10.1139/cjc-2012-0526

    17. [17]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307

    18. [18]

      Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010.doi: 10.1021/ja9924039

    19. [19]

      Miranda-Quintana, R. A. Conceptual Density Functional Theory and its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press. doi: 10.3866/PKU.WHXB201711021

    20. [20]

      Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; CRC Press: Boca Raton, FL, USA, 2009.

    21. [21]

      Fuentealba, P.; Cárdenas, C. Chemical Modelling; Springborg, M., Ed.; The Royal Society of Chemistry: London, UK, 2015; Vol. 11, p. 151. http://www.whxb.pku.edu.cn/CN/abstract/abstract30094.shtml

    22. [22]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332

    23. [23]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    24. [24]

      Domingo, L. R.; Perez, P.; Saez, J. A. RSC Adv. 2013, 3, 1486.doi: 10.1039/C2RA22886F

    25. [25]

      Domingo, L. R.; Zaragoza, R. J.; Saez, J. A.; Arno, M. Molecules 2012, 17, 1335. doi: 10.3390/molecules17021335

    26. [26]

      Domingo, L. R.; Perez, P.; Contreras, R. Tetrahedron 2004, 60, 6585. doi: 10.1016/j.tet.2004.06.003

    27. [27]

      Domingo, L. R.; Aurell, M. J.; Perez, P.; Contreras, R. J. Phys. Chem. A 2002, 106, 6871. doi: 10.1021/jp020715j

    28. [28]

      Anderson, J. S. M.; Liu, Y. L.; Thomson, J. W.; Ayers, P. W. J. Mol. Struct.: THEOCHEM 2010, 943, 168.doi: 10.1016/j.theochem.2009.12.013

    29. [29]

      Ayers, P. W.; Anderson, J. S. M.; Rodriguez, J. I.; Jawed, Z. Phys. Chem. Chem. Phys. 2005, 7, 1918. doi: 10.1039/B500996K

    30. [30]

      Chamorro, E.; Chattaraj, P. K.; Fuentealba, P. J. Phys. Chem. A 2003, 107, 7068. doi: 10.1021/jp035435y

    31. [31]

      Parthasarathi, R.; Elango, M.; Subramanian, V.; Chattaraj, P. K. Theor. Chem. Acc. 2005, 113, 257. doi: 10.1007/s00214-005-0634-3

    32. [32]

      González, M. M.; Hernández-Castillo, D.; Montero-Cabrera, L. A.; Miranda-Quintana, R. A. Int. J. Quantum Chem. 2017, e25444.doi: 10.1002/qua.25444

    33. [33]

      Moens, J.; Jaque, P.; De Proft, F.; Geerlings, P. J. Phys. Chem. A 2008, 112, 6023. doi: 10.1021/jp711652a

    34. [34]

      Moens, J.; Geerlings, P.; Roos, G. Chem. -A Eur. J. 2007, 13, 8174. doi: 10.1002/chem.200601896

    35. [35]

      Moens, J.; Roos, G.; Jaque, P.; Proft, F.; Geerlings, P. Chem. -A Eur. J. 2007, 13, 9331. doi: 10.1002/chem.200700547

    36. [36]

      Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. K. Curr. Sci. 2004, 86, 535. doi: 10.1007/s11030-005-9009-x

    37. [37]

      Parthasarathi, R.; Subramanian, V.; Roy, D. R.; Chattaraj, P. K. Biorg. Med. Chem. 2004, 12, 5533. doi: 10.1016/j.bmc.2004.08.013

    38. [38]

      Rétey, J. Biochim. Biophys. Acta 2003, 1647, 179.doi: 10.1016/S1570-9639(03)00091-8

    39. [39]

      Rosenkranz, H. S.; Klopman, G.; Zhang, Y.; Graham, C.; Karol, M. H. Environ. Health Perspect. 1999, 107, 129. doi: 10.1289/ehp.99107129

    40. [40]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 046101.doi: 10.1063/1.4974987

    41. [41]

      Pan, S.; Sola, M.; Chattaraj, P. K. J. Phys. Chem. A 2013, 117, 1843. doi: 10.1021/jp312750n

    42. [42]

      Morell, C.; Labet, V.; Grand, A.; Chermette, H. Phys. Chem. Chem. Phys. 2009, 11, 3414. doi: 10.1039/B818534D

    43. [43]

      Chattaraj, P. K. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 2007, 81, 871 doi: 10.3866/PKU.WHXB201711021

    44. [44]

      Miranda-Quintana, R. A.; Chattaraj, P. K.; Ayers, P. W. J. Chem. Phys. 2017, 147, 124103. doi: 10.1063/1.4996443

    45. [45]

      Gazquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111, 1966. doi: 10.1021/jp065459f

    46. [46]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 896, 73. doi: 10.1016/j.theochem.2008.11.009

    47. [47]

      Chamorro, E.; Duque-Noreña, M.; Perez, P. J. Mol. Struct. 2009, 901, 145. doi: 10.1016/j.theochem.2009.01.014

    48. [48]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P. W. Acta Phys. -Chim. Sin. 2018, submitted.

    49. [49]

      Miranda-Quintana, R. A. J. Chem. Phys. 2017, 146, 214113.doi: 10.1063/1.4984611

    50. [50]

      Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.doi: 10.1021/ja00364a005

    51. [51]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185

    52. [52]

      Sanderson, R. T. Science 1951, 114, 670. doi: 10.1126/science.114.2973.670

    53. [53]

      Galvan, M.; Vela, A.; Gazquez, J. L. J. Phys. Chem. 1988, 92, 6470. doi: 10.1021/j100333a056

    54. [54]

      Vargas, R.; Galvan, M.; Vela, A. J. Phys. Chem. A 1998, 102, 3134. doi: 10.1021/jp972984t

    55. [55]

      Galvan, M.; Vargas, R. J. Phys. Chem. 1992, 96, 1625.doi: 10.1021/j100183a026

    56. [56]

      Ghanty, T. K.; Ghosh, S. K. J. Am. Chem. Soc. 1994, 116, 3943. doi: 10.1021/ja00088a033

    57. [57]

      Chamorro, E.; Santos, J. C.; Escobar, C. A.; Perez, P. Chem. Phys. Lett. 2006, 431, 210. doi: 10.1016/j.cplett.2006.09.072

    58. [58]

      Chamorro, E.; Perez, P.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2006, 124, 044105. doi: 10.1063/1.2161187

    59. [59]

      Perez, P.; Chamorro, E.; Ayers, P. W. J. Chem. Phys. 2008, 128, 204108. doi: 10.1063/1.2916714

    60. [60]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 239. doi: 10.1007/s00214-016-1995-5

    61. [61]

      Cardenas, C.; Heidar Zadeh, F.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 25721. doi: 10.1039/C6CP04533B

    62. [62]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    63. [63]

      Heidar Zadeh, F.; Miranda-Quintana, R. A.; Verstraelen, T.; Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12, 5777. doi: 10.1021/acs.jctc.6b00494

    64. [64]

      Miranda-Quintana, R. A.; Ayers, P. W. Conceptual Density Functional Theory and Its Applications in the Chemical Domain; Islam, N., Kaya, S., Eds.; Apple Academic Press: NJ, USA, in press. doi: 10.3866/PKU.WHXB201711021

    65. [65]

      Miranda-Quintana, R. A.; Ayers, P. W. J. Chem. Phys. 2016, 144, 244112. doi: 10.1063/1.4953557

    66. [66]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 129, 054111. doi: 10.1063/1.2957900

    67. [67]

      Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108. doi: 10.1063/1.2918731

    68. [68]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2017, 147, 094105. doi: 10.1063/1.4999761

    69. [69]

      Franco-Pérez, M.; Heidar-Zadeh, F.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 11588.doi: 10.1039/C7CP00224F

    70. [70]

      Franco-Pérez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. Phys. Chem. Chem. Phys. 2017, 19, 13687. doi: 10.1039/C7CP00692F

    71. [71]

      Polanco-Ramírez, C. A.; Franco-Pérez, M.; Carmona-Espíndola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/C7CP00691H

    72. [72]

      Franco-Pérez, M.; Ayers, P.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422

    73. [73]

      Franco-Pérez, M.; Gazquez, J. L.; Ayers, P.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539

    74. [74]

      Malek, A.; Balawender, R. J. Chem. Phys. 2015, 142, 054104.doi: 10.1063/1.4906555

    75. [75]

      Miranda-Quintana, R. A.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 15070. doi: 10.1039/c6cp00939e

    76. [76]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2017, 136, 76.doi: 10.1007/s00214-017-2109-8

    77. [77]

      Miranda-Quintana, R. A.; Ayers, P. W. Theor. Chem. Acc. 2016, 135, 172. doi: 10.1007/s00214-016-1924-7

    78. [78]

      Miranda-Quintana, R. A. Theor. Chem. Acc. 2016, 135, 189.doi: 10.1007/s00214-016-1945-2

    79. [79]

      Miranda-Quintana, R. A.; González, M. M.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 22235. doi: 10.1039/c6cp03213c

    80. [80]

      Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.doi: 10.1021/ja01004a002

    81. [81]

      Klopman, G.; Hudson, R. F. Theor. Chim. Act. 1967, 8, 165.doi: 10.1007/bf00526373

    82. [82]

      Klopman, G.; Klopman, G. Chemical Reactivity and Reaction Paths; Wiley-Interscience: New York, NY, USA, 1974; p. 55.

    83. [83]

      Hudson, R. F.; Klopman, G. Tetrahedron Lett. 1967, 12, 1103.doi: 10.1016/S0040-4039(00)90645-2

    84. [84]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 553.doi: 10.1021/ja01005a002

    85. [85]

      Salem, L. J. Am. Chem. Soc. 1968, 90, 543.doi: 10.1021/ja01005a001

    86. [86]

      Salem, L. Chem. Br. 1969, 5, 449.

    87. [87]

      Witten, I. H.; Frank, E.; Hall, M. A.; Pal, C. J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Elsevier: Cambridge, MA, USA, 2017.

    88. [88]

      Gertrudes, J. C.; Maltarollo, V. G.; Silva, R. A.; Oliveira, P. R.; Honorio, K. M.; da Silva, A. B. F. Curr. Med. Chem. 2012, 19, 4289. doi: 10.2174/092986712802884259

    89. [89]

      Carrera, G.; Gupta, S.; Aires-de-Sousa, J. J. Comput. Aided Mol. Des. 2009, 23, 419. doi: 10.1007/s10822-009-9275-2

    90. [90]

      Dietterich, T. G. Ai Mag. 1997, 18, 97. doi: 10.1609/aimag.v18i4.1324

    91. [91]

      Carbonell, J. G.; Michalski, R. S.; Mitchell, T. M. Machine Learning: an Artificial Intelligence Approach; Michalski, R. S., Carbonell, J. G., Mitchell, T. M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 1983; p. 3.doi: 10.1007/978-3-662-12405-5_1

    92. [92]

      Lino, A.; Rocha, A.; Sizo, A. J. Intell. Fuzzy Syst. 2016, 31, 2061. doi: 10.3233/JIFS-169045

    93. [93]

      Affenzeller, M.; Winkler, S. M.; Kronberger, G.; Kommenda, M.; Burlacu, B.; Wagner, S. Genetic Programming Theory and Practice XI; Riolo, R., Moore, J. H., Kotanchek, M., Eds.; Springer New York: New York, NY, USA, 2014; p. 175.doi: 10.1007/978-1-4939-0375-7_10

    94. [94]

      Billard, L.; Diday, E. Classification, Clustering, and Data Analysis: Recent Advances and Applications; Jajuga, K., Sokolowski, A., Bock, H. H., Eds.; Springer-Verlag: Berlin, Germany, 2012.

    95. [95]

      Billard, L.; Diday, E. J. Am. Stat. Assoc. 2003, 98, 470.doi: 10.1198/016214503000242

    96. [96]

      Billard, L.; Diday, E. Data Analysis, Classification, and Related Methods; Kiers, H. A. L., Rasson, J.-P., Groenen, P. J. F., Schader, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, Germany, 2000; p. 369. doi: 10.1007/978-3-642-59789-3_58

    97. [97]

      Schmidt, M. D.; Vallabhajosyula, R. R.; Jenkins, J. W.; Hood, J. E.; Soni, A. S.; Wikswo, J. P.; Lipson, H. Phys. Biol. 2011, 8, 055011. doi: 10.1088/1478-3975/8/5/055011

    98. [98]

      Schmidt, M. W.; Lipson, H. Science 2009, 324, 81.doi: 10.1126/science.1165893

    99. [99]

      Bongard, J.; Lipson, H. Proc. Natl. Acad. Sci. USA 2007, 104, 9943.doi: 10.1073/pnas.0609476104

    100. [100]

      Quade, M.; Abel, M.; Shafi, K.; Niven, R. K. Phys. Rev. B 2016, 94, 012214. doi: 10.1103/PhysRevE.94.012214

    101. [101]

      Koza, J. R. 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990; p. 819.

    102. [102]

      Sharma, S.; Tambe, S. S. Biochem. Eng. J. 2014, 85, 89.doi: 10.1016/j.bej.2014.02.007

    103. [103]

      Langdon, W. B.; Poli, R. Found. Genet. Program.; Springer-Verlag: Berlin, Germany, 2013.

    104. [104]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 33. doi: 10.1007/978-1-4615-0447-4_4

    105. [105]

      O'Neil, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer US: Boston, MA, USA, 2003; p. 79. doi: 10.1007/978-1-4615-0447-4_7

    106. [106]

      Ryan, C.; Collins, J.; Neill, M. O. Genetic Programming: First European Workshop, EuroGP'98 Paris, France, April 14–15, 1998 Proceedings; Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T. C., Eds.; Springer: Berlin, Heidelberg, Germany, 1998;, p. 83.doi: 10.1007/BFb0055930

    107. [107]

      Luke, S.; Spector, L. Genetic Programming 1997: Proceedings of the Second Annual Conference (GP97); Koza, J., Ed.; San Francisco, CA, USA, 1997; p. 240.

    108. [108]

      Spears, W. M.; Anand, V. Methodologies for Intelligent Systems: 6th International Symposium, ISMIS '91 Charlotte, N. C., USA, October 16–19, 1991 Proceedings; Ras, Z. W., Zemankova, M., Eds.; Springer: Berlin, Heidelberg, Germany, 1991; p. 409.doi: 10.1007/3-540-54563-8_104

    109. [109]

      Chomsky, N. IRE Trans. Inf. Theory 1956, 2, 113. doi: 10.1109/TIT.1956.1056813

    110. [110]

      Ginsburg, S. The Mathematical Theory of Context Free Languages; McGraw-Hill, New York, NY, USA, 1966.

    111. [111]

      Temkin, J. M.; Gilder, M. R. Bioinformatics 2003, 19, 2046.doi: 10.1093/bioinformatics/btg279

    112. [112]

      Trelea, I. C. Inf. Proc. Lett. 2003, 85, 317.doi: 10.1016/S0020-0190(02)00447-7

    113. [113]

      Mayr, H. http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank/; Vol. 2017 (accessed Oct 30, 2017). https://www.researchgate.net/publication/319603667_Rigorous_Conformational_Analysis_of_Pyrrolidine_Enamines_with_Relevance_to_Organocatalysis

    114. [114]

      Mayr, H. http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html; Vol. 2017 (accessed Oct 30, 2017). http://www.whxb.pku.edu.cn/CN/abstract/abstract30094.shtml

    115. [115]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009. http://www.oalib.com/references/9060914

    116. [116]

      Wagner, S.; Kronberger, G.; Beham, A.; Kommenda, M.; Scheibenpflug, A.; Pitzer, E.; Vonolfen, S.; Kofler, M.; Winkler, S.; Dorfer, V.; et al. Advanced Methods and Applications in Computational Intelligence; Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z., Eds.; Springer International Publishing: Heidelberg, Germany, 2014; p. 197. doi: 10.1007/978-3-319-01436-4_10

    117. [117]

      Yang, W. T.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.doi: 10.1021/ja00279a008

    118. [118]

      Miranda-Quintana, R. A. Chem. Phys. Lett. 2016, 658, 328.doi: 10.1016/j.cplett.2016.06.068

    119. [119]

      Zielinski, F.; Tognetti, V.; Joubert, L. Chem. Phys. Lett. 2012, 527, 67. doi: 10.1016/j.cplett.2012.01.011

    120. [120]

      Bultinck, P.; Fias, S.; Alsenoy, C. V.; Ayers, P. W.; Carbó-Dorca, R. J. Chem. Phys. 2007, 127, 034102. doi: 10.1063/1.2749518

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  503
  • HTML全文浏览量:  14
文章相关
  • 发布日期:  2018-06-15
  • 收稿日期:  2017-09-13
  • 接受日期:  2017-10-30
  • 修回日期:  2017-10-13
  • 网络出版日期:  2017-06-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章