Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes

Carlos CÁRDENAS Macarena MUÑOZ Julia CONTRERAS Paul W. AYERS Tatiana GÓMEZ Patricio FUENTEALBA

Citation:  CÁRDENAS Carlos, MUÑOZ Macarena, CONTRERAS Julia, AYERS Paul W., GÓMEZ Tatiana, FUENTEALBA Patricio. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes
[J]. Acta Physico-Chimica Sinica, 2018, 34(6): 631-638. doi: 10.3866/PKU.WHXB201710201
shu

Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes

    通讯作者: CÁRDENASCarlos, cardena@macul.ciencias.uchile.cl
    FUENTEALBAPatricio,
摘要: Chemical reactivity towards electron transfer is captured by the Fukui function. However, this is not well defined when the system or its ions have degenerate or pseudo-degenerate ground states. In such a case, the first-order chemical response is not independent of the perturbation and the correct response has to be computed using the mathematical formalism of perturbation theory for degenerate states. Spatial pseudo-degeneracy is ubiquitous in nanostructures with high symmetry and totally extended systems. Given the size of these systems, using degenerate-state perturbation theory is impractical because it requires the calculation of many excited states. Here we present an alternative to compute the chemical response of extended systems using models of local softness in terms of the local density of states. The local softness is approximately equal to the density of states at the Fermi level. However, such approximation leaves out the contribution of inner states. In order to include and weight the contribution of the states around the Fermi level, a model inspired by the long-range behavior of the local softness is presented. Single wall capped carbon nanotubes (SWCCNT) illustrate the limitation of the frontier orbital theory in extended systems. Thus, we have used a C360 SWCCNT to test the proposed model and how it compares with available models based on the local density of states. Interestingly, a simple Hückel approximation captures the main features of chemical response of these systems. Our results suggest that density-of-states models of the softness along simple tight binding Hamiltonians could be used to explore the chemical reactivity of more complex system, such a surfaces and nanoparticles.

English

    1. [1]

      Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    2. [2]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    3. [3]

      Chermette, H. J. Comput. Chem. 1999, 20, 129. doi: 10.1002/(SICI)1096-987X(19990115)20:1

    4. [4]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332

    5. [5]

      Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2008000100002

    6. [6]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307

    7. [7]

      Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065. doi: 10.1021/cr040109f

    8. [8]

      Johnson, P. A.; Bartolotti, L. J.; Ayers, P. W.; Fievez, T.; Geerlings, P. Modern Charge-Density Analysis; Springer: The Netherlands, 2012; p. 715.

    9. [9]

      Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036

    10. [10]

      Yang, W. T.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862. doi: 10.1063/1.447964

    11. [11]

      Yang, W. T.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723

    12. [12]

      Fukui, K. Science 1982, 218, 747. doi: 10.1126/science.218.4574.747

    13. [13]

      Ayers, P. W.; Levy, M. Theo. Chem. Acc. 2000, 103, 353. doi: 10.1007/s002149900093

    14. [14]

      Fuentealba, P.; Cardenas, C.; Pino-Rios, R.; Tiznado, W. Applications of Topological Methods in Molecular Chemistry; Springer International Publishing: Switzerland, 2016; p. 227.

    15. [15]

      Ayers, P. W.; Yang, W. T.; Bartolotti, L. J. Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 255.

    16. [16]

      Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

    17. [17]

      Chan, G. K. L. J. Chem. Phys. 1999, 110, 4710. doi: 10.1063/1.478357

    18. [18]

      Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/PhysRevLett.84.5172

    19. [19]

      Cohen, M. H.; Wasserman, A. Isr. J. Chem. 2003, 43, 219. doi: 10.1560/3R9J-FHB5-51UV-C4BJ

    20. [20]

      Ayers, P. W. J. Math. Chem. 2008, 43, 285. doi: 10.1007/s10910-006-9195-5

    21. [21]

      Cohen, A. J.; Mori-Sanchez, P.; Yang, W. T. Science 2008, 321, 792. doi: 10.1126/science.1158722

    22. [22]

      Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801. doi: 10.1063/1.436185

    23. [23]

      Nalewajski, R. F.; Kozlowski, P. M. Acta Phys. Polon. 1986, A70, 457.

    24. [24]

      Cárdenas, C.; Heidar-Zadeh, F.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 25721. doi: 10.1039/C6CP04533B

    25. [25]

      Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Phys. 2007, 126, 224108. doi: 224108/Artn 224108

    26. [26]

      Fievez, T.; Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2008, 4, 1065. doi: 10.1021/ct800027e

    27. [27]

      Fuentealba, P.; Chamorro, E.; Cárdenas, C. Int. J. Quantum Chem. 2007, 107, 37. doi: 10.1002/qua.21021

    28. [28]

      Bartolotti, L. J.; Ayers, P. W. J. Phys. Chem. A 2005, 109, 1146. doi: 10.1021/jp0462207

    29. [29]

      Echegaray, E.; Rabi, S.; Cardenas, C.; Zadeh, F. H.; Rabi, N.; Lee, S.; Anderson, J. S.; Toro-Labbe, A.; Ayers, P. W. J. Mol. Model. 2014, 20, 1. doi: 10.1007/s00894-014-2162-3

    30. [30]

      Cardenas, C.; Ayers, P. W.; Cedillo, A. J. Chem. Phys. 2011, 134, 174103. doi: 10.1063/1.3585610

    31. [31]

      Bultinck, P.; Cardenas, C.; Fuentealba, P.; Johnson, P. A.; Ayers, P. W. J. Chem. Theory Comput. 2013, 10, 202. doi: 10.1021/ct400874d

    32. [32]

      Bultinck, P.; Cardenas, C.; Fuentealba, P.; Johnson, P. A.; Ayers, P. W. J. Chem. Theory Comput. 2013, 9, 4779. doi: 10.1021/ct4005454

    33. [33]

      Bultinck, P.; Jayatilaka, D.; Cardenas, C. Comput. Theor. Chem. 2015, 1053, 106. doi: 10.1016/j.comptc.2014.06.017

    34. [34]

      Avouris, P. Accounts Chem. Res. 2002, 35, 1026. doi: 10.1021/ar010152e

    35. [35]

      Fowler, P. W.; Manopoulos, D. E. An Atlas of Fullerene; Oxford Press University: Oxford, UK, 1995.

    36. [36]

      Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Adv. Mater. 2005, 17, 17. doi: 10.1002/adma.200401340

    37. [37]

      Fowler, P. W. Contemp. Phys. 1996, 37, 235. doi: 10.1080/00107519608217530

    38. [38]

      Prodan, E.; Kohn, W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635. doi: 10.1073/pnas.0505436102

    39. [39]

      Prodan, E. Phys. Rev. B 2006, 73, 085108. doi: 10.1103/PhysRevB.73.085108

    40. [40]

      Cardenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.; Fuentealba, P. J. Phys. Chem. A 2009, 113, 8660. doi: 10.1021/jp902792n

    41. [41]

      Flores-Moreno, R. J. Chem. Theory Comput. 2009, 6, 48. doi: 10.1021/ct9002527

    42. [42]

      Martínez, J. Chem. Phys. Lett. 2009, 478, 310. doi: 10.1016/j.cplett.2009.07.086

    43. [43]

      Pino-Rios, R.; Ya ez, O.; Inostroza, D.; Ruiz, L.; Cardenas, C.; Fuentealba, P.; Tiznado, W. J. Comput. Chem. 2017, 38, 481. doi: 10.1002/jcc.24699

    44. [44]

      Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034

    45. [45]

      Cohen, M. H.; Ganduglia-Pirovano, M. V. J. Chem. Phys. 1994, 101, 8988. doi: 10.1063/1.468026

    46. [46]

      Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovsky, J. J. Chem. Phys. 1995, 103, 3543. doi: 10.1063/1.470238

    47. [47]

      Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovsky, J. Phys. Rev. Lett. 1994, 72, 3222. doi: 10.1103/PhysRevLett.72.3222

    48. [48]

      Cohen, M. H. Top. Curr. Chem. Density Functional Theory Ⅳ; Springer-Verlag, Berlin, Germany, 1996; Vol. 183, p. 143.

    49. [49]

      Santos, J. C.; Contreras, R.; Chamorro, E.; Fuentealba, P. J. Chem. Phys. 2002, 116, 4311. doi: 10.1063/1.1449944

    50. [50]

      Alzate-Morales, J. H.; Tiznado, W.; Santos, J. C.; Cardenas, C.; Contreras, R. J. Phys. Chem. B 2007, 111, 3293. doi: 10.1021/jp064549h

    51. [51]

      Santos, J. C.; Chamorro, E.; Contreras, R.; Fuentealba, P. Chem. Phys. Lett. 2004, 383, 612. doi: 10.1016/j.cplett.2003.11.083

    52. [52]

      Brommer, K. D.; Galván, M.; Dal Pino, A.; Joannopoulos, J. D. Surf. Sci. 1994, 314, 57. doi: 10.1016/0039-6028(94)90212-7

    53. [53]

      Nguyen, L. T.; De Proft, F.; Amat, M. C.; Van Lier, G.; Fowler, P. W.; Geerlings, P. J. Phys. Chem. A 2003, 107, 6837. doi: 10.1021/jp034388

    54. [54]

      Cardenas, C.; De Proft, F.; Chamorro, E.; Fuentealba, P.; Geerlings, P. J. Chem. Phys. 2008, 128, 034708. doi: 10.1063/1.2819239

    55. [55]

      Morrell, M. M.; Parr, R. G.; Levy, M. J. Chem. Phys. 1975, 62, 549. doi: 10.1063/1.430509

    56. [56]

      Katriel, J.; Davidson, E. R. Proc. Natl. Acad. Sci. USA 1980, 77, 4403. doi: 10.1073/pnas.77.8.4403

    57. [57]

      Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T. Phys. Rev. A 1977, 16, 1782. doi: 10.1103/PhysRevA.16.1782

    58. [58]

      Ahlrichs, R.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Morgan, J. D., Ⅲ. Phys. Rev. A 1981, 23, 2106. doi: 10.1103/PhysRevA.23.2106

    59. [59]

      Levy, M.; Perdew, J. P.; Sahni, V. Phys. Rev. A 1984, 30, 2745. doi: 10.1103/PhysRevA.30.2745

    60. [60]

      Handy, N. C.; Marron, M. T.; Silverstone, H. J. Phys. Rev. 1969, 180, 45. doi: 10.1103/PhysRev.180.45

    61. [61]

      Yang, W. T.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008

    62. [62]

      Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  356
  • HTML全文浏览量:  29
文章相关
  • 发布日期:  2018-06-15
  • 收稿日期:  2017-08-30
  • 接受日期:  2017-10-17
  • 修回日期:  2017-10-12
  • 网络出版日期:  2017-06-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章