Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds

GOLMOHAMMADI Hassan DASHTBOZORGI Zahra KHOOSHECHIN Sajad

引用本文: GOLMOHAMMADI Hassan,  DASHTBOZORGI Zahra,  KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. 物理化学学报, 2017, 33(5): 918-926. doi: 10.3866/PKU.WHXB201701163 shu
Citation:  GOLMOHAMMADI Hassan,  DASHTBOZORGI Zahra,  KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 918-926. doi: 10.3866/PKU.WHXB201701163 shu

Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds

摘要: The purpose of this paper is to present a novel way to building quantitative structure-propertyrelationship (QSPR) models for predicting the gas-to-benzene solvation enthalpy (ΔHSolv) of 158 organiccompounds based on molecular descriptors calculated from the structure alone. Different kinds of descriptorswere calculated for each compounds using dragon package. The variable selection technique of enhancedreplacement method (ERM) was employed to select optimal subset of descriptors. Our investigation revealsthat the dependence of physico-chemical properties on solvation enthalpy is a nonlinear observable fact andthat ERM method is unable to model the solvation enthalpy accurately. The standard error value of predictionset for support vector machine (SVM) is 1.681 kJ·mol-1 while it is 4.624 kJ·mol-1 for ERM. The resultsestablished that the calculated ΔHSolv values by SVM were in good agreement with the experimental ones, andthe performances of the SVM models were superior to those obtained by ERM one. This indicates that SVMcan be used as an alternative modeling tool for QSPR studies.

English

    1. [1]

      Duffy, E. M.; Jorgensen, W. L. J. Am. Chem. Soc. 2000, 122, 2878. doi: 10.1021/ja993663t

    2. [2]

      Cornell, W. E.; Cieplak, P.; Bayly, C. I.; Merz, K. M.; Ferguson, D. M.; Spellmayer, D. C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. J. Am. Chem. Soc. 1995, 117, 5179. doi: 10.1021/ja00124a002

    3. [3]

      Graziano, G. Can. J. Chem. 2000, 78, 1233. doi: 10.1139/v00-125

    4. [4]

      Graziano, G. Biophys. Chem. 1999, 82, 69. doi: 10.1016/S0301-4622(99)00063-0

    5. [5]

      Graziano, G. J. Phys. Chem. B 2000, 104, 9249. doi: 10.1021/jp001461

    6. [6]

      Garde, S.; Garcia, A. E.; Pratt, L. R.; Hummer, G. Biophys.Chem. 1999, 78, 21. doi: 10.1016/S0301-4622(99)00018-6

    7. [7]

      Mintz, C.; Burton, K.; Acree, W. E., Jr.; Abraham, M. H. FluidPhase Equilibr. 2007, 258, 191. doi: 10.1016/j.fluid.2007.06.016

    8. [8]

      Chickos, J. S.; Acr

    9. [9]

      ee, W. E., Jr. J. Phys. Chem. Ref. Data 2003, 32, 519.doi: 10.1063/1.1529214

    10. [10]

      Chickos, J. S.; Acree, W. E., Jr. J. Phys. Chem. Ref. Data 2002, 31, 537. doi: 10.1063/1.1475333

    11. [11]

      Borges does Santos, R. M.; Muralha, V. S. F.; Correia, C. F.; Simões, J. A. M. J. Am. Chem. Soc. 2001, 123, 12670.doi: 10.1021/ja010703w

    12. [12]

      Laarhoven, L. J. J.; Mulder, P.; Wayner, D. D. M. Acc. Chem.Res. 1999, 32, 342. doi: 10.1021/ar9703443

    13. [13]

      Hansch, C.; Leo, A. Exploring QSAR: Fundamentals andApplications in Chemistry and Biology, American ChemicalSociety, Washington DC, 1995. doi: 10.1021/jm950902o

    14. [14]

      Bao, L.; Sun, Z. R. FEBS Lett. 2002, 521, 109. doi: 10.1016/S0014-5793(02)02835-1

    15. [15]

      Belousov, A. I.; Verzakov, S. A.; Von Frese, J. Chemom. Intell.Lab. Syst. 2002, 64, 15. doi: 10.1016/S0169-7439(02)00046-1

    16. [16]

      Cai, Y. D.; Liu, X. J.; Xu, X. B.; Chou, K. C. Comput. Chem.2002, 26, 293. doi: 10.1016/S0097-8485(01)00113-9

    17. [17]

      Morris, C.W.; Autret, A.; Boddy, L. Ecol. Model. 2001, 146, 57.doi: 10.1016/S0304-3800(01)00296-4

    18. [18]

      Song, M. H.; Breneman, C. M.; Bi, J. B.; Sukumar, N.; Bennett, K. P.; Cramer, S.; Tugcu, N. J. Chem. Inf. Comput. Sci. 2002, 42, 1347. doi: 10.1021/ci025580t

    19. [19]

      Liu, H. X.; Zhang, R. S.; Luan, F.; Yao, X. J.; Liu, M. C.; Hu, Z.D.; Fan, B. T. J. Chem. Inf. Comput. Sci. 2003, 43, 900.doi: 10.1021/ci0256438

    20. [20]

      Liu, H. X.; Zhang, R. S.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T. J. Chem. Inf. Comput. Sci. 2003, 43, 1288. doi: 10.1021/ci0340355

    21. [21]

      Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Struct.Chem. 2013, 24, 1799. doi: 10.1007/s11224-013-0222-4

    22. [22]

      Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Phys.Chem. Liq. 2013, 51, 182. doi: 10.1080/00319104.2012.708932

    23. [23]

      Dashtbozorgi, Z.; Golmohammadi, H.; Acree, W. E., Jr.Thermochim. Acta 2012, 539, 7. doi: 10.1016/j.tca.2012.03.017

    24. [24]

      Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Mol.Inf. 2012, 31, 867. doi: 10.1002/minf.201200091

    25. [25]

      Dashtbozorgi, Z.; Golmohammadi, H.; Acree, W. E., Jr. Eur. J.Pharm. Sci. 2012, 47, 421. doi: 10.1016/j.ejps.2012.06.021

    26. [26]

      Mintz, C.; Clark, M.; Burton, K.; Acree, W. E., Jr.; Abraham, M.H. QSAR Comb. Sci. 2007, 26, 881. doi: 10.1002/qsar.200630152

    27. [27]

      Toubaei, A.; Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W.E., Jr. J. Mol. Liq. 2012, 175, 24. doi: 10.1016/j.molliq.2012.08.006

    28. [28]

      Todeschini, R.; Consonni, V. Molecular Descriptors forChemoinformatics.Wiley VCH:Weinheim, 2009. doi: 10.1002/9783527628766.ch22

    29. [29]

      Hyperchem, re. 4. for Windows, Autodesk, Sansalito, CA, 1995.

    30. [30]

      Todeschini, R.; Consonni, V.; Pavan, M. Dragon Software, Milano, 2002.

    31. [31]

      Mercader, A. G.; Duchowicz, P. R.; Fernández, F. M.; Castro, E.A. J. Chem. Inf. Model. 2011, 51, 1575. doi: 10.1021/ci200079b

    32. [32]

      MATLAB 7.0, The Mathworks Inc., Natick, MA, USA, 2005, http://www.mathworks.com.

    33. [33]

      Baghban, A.; Ahmadi, M. A.; Pouladi, B.; Amanna, B.J. Supercrit. Fluids 2015, 101, 184. doi: 10.1016/j.supflu.2015.03.004

    34. [34]

      Vapnik, V. N.; Lerner, A. Autom. Remote Control 1963, 24, 774.

    35. [35]

      Vapnik, V. N.; Chervonenkis, A. Y. Autom. Remote Control 1964, 25, 821.

    36. [36]

      Rojas, C.; Duchowicz, P. R.; Tripaldi, P.; Pis Diez, R.Chemometr. Intell. Lab. Syst. 2015, 140, 126. doi: 10.1016/j.chemolab.2014.09.020

    37. [37]

      Mercader, G.; Duchowicz, P. R.; Fernández, F. M.; Castro, E. A.Chemometr. Intell. Lab. Syst. 2008, 92, 138. doi: 10.1016/j.chemolab.2008.02.005

    38. [38]

      Gramatica, P. QSAR Comb. Sci. 2007, 26, 694. doi: 10.1002/qsar.200610151

    39. [39]

      Cao, D. S.; Liang, Y. Z.; Xu, Q. S.; Li, H. D.; Chen, X.J. Comput. Chem. 2010, 31, 592. doi: 10.1002/jcc.21351

    40. [40]

      Yan, J.; Huang, J. H.; He, M.; Lu, H. B.; Yang, R.; Kong, B.; Xu, Q. S.; Liang, Y. Z. J. Sep. Sci. 2013, 36, 2464. doi: 10.1002/jssc.201300254

    41. [41]

      Cao, D. S.; Liang, Y. Z.; Xu, Q. S.; Yun, Y. H.; Li, H. D.J. Comput. Aided Mol. Des. 2011, 25, 67. doi: 10.1007/s10822-010-9401-1

    42. [42]

      Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T.; McDowell, R. M.; Gramatica, P. Health Perspect. 2003, 111, 1361. doi: 10.1289/ehp.5758

    43. [43]

      Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y.; Lee, K. H.; Tropsha, A. J. Comput. Aided Mol. Des. 2003, 17, 241.doi: 10.1023/A:1025386326946

    44. [44]

      Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20, 269.doi: 10.1016/S1093-3263(01)00123-1

    45. [45]

      Agrawal, V. K.; Khadikar, P.V. Bioorg. Med. Chem. 2001, 911, 3035. doi: 10.1016/S0968-0896(01)00211-5

    46. [46]

      Pourbasheer, E.; Riahi, S.; Ganjali, M. R.; Norouzi, P.J. Enzyme. Inhib. Med. Chem. 2010, 256, 844. doi: 10.3109/14756361003757893

    47. [47]

      Antipin, I. S.; Arslanov, N. A.; Palyulin, V. A.; Konovalov, A. I.; Zefirov, N. S. Dokl. Akad. Nauk. SSSR 1991, 316, 925.

    48. [48]

      Sarkar, R.; Roy, A. B.; Sarkar, P. K. Math. Biosci. 1978, 39, 299.doi: 10.1016/0025-5564(78)90060-3

    49. [49]

      Geary, R.C. Incorp. Statist. 1954, 5, 15. doi: 10.2307/2986645

    50. [50]

      Moreau, G.; Broto, P. Nouv. J. Chim. 1980, 4, 757.

    51. [51]

      Todeschini, R.; Consonni, V. Handbook of MolecularDescriptors, In: Methods and Principles in MedicinalChemistry; Mannhold, R., Kubinyi, H., Timmerman, H. Eds.; Wiley-VCH:Weinheim, 2000. doi: 10.1002/9783527613106

    52. [52]

      Ma, S.; Lv, M.; Deng, F.; Zhang, X.; Zhai, H.; Lv, W. J. Hazard.Mater. 2015, 283, 591. doi: 10.1016/j.jhazmat.2014.10.011

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  321
  • HTML全文浏览量:  34
文章相关
  • 发布日期:  2017-01-16
  • 收稿日期:  2016-12-13
  • 修回日期:  2017-01-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章