CeO2对CuCl/活性炭吸附剂C2H4/C2H6吸附分离性能促进作用

邢建东 敬方梨 储伟 孙红丽 喻磊 张欢 罗仕忠

引用本文: 邢建东, 敬方梨, 储伟, 孙红丽, 喻磊, 张欢, 罗仕忠. CeO2对CuCl/活性炭吸附剂C2H4/C2H6吸附分离性能促进作用[J]. 物理化学学报, 2015, 31(11): 2158-2164. doi: 10.3866/PKU.WHXB201510091 shu
Citation:  XING Jian-Dong, JING Fang-Li, CHU Wei, SUN Hong-Li, YU Lei, ZHANG Huan, LUO Shi-Zhong. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2158-2164. doi: 10.3866/PKU.WHXB201510091 shu

CeO2对CuCl/活性炭吸附剂C2H4/C2H6吸附分离性能促进作用

    通讯作者: 储伟, 罗仕忠; 储伟, 罗仕忠
  • 基金项目:

    国家自然科学基金(21476145)资助项目 (21476145)

摘要: 通过等体积浸渍方法制备了添加CeO2助剂的用于C2H4/C2H6吸附分离的CuCl/活性炭(AC)吸附剂, 使用氮气吸附-脱附曲线、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、能量分散X射线光谱(EDX)等分析方法对吸附剂进行了表征. 结果表明, 吸附剂表面Cu(II)在氮气气氛焙烧过程中被部分还原成Cu(I). 重点研究了Ce元素的添加对于吸附剂的C2H4/C2H6吸附分离性能的影响, 等温吸附曲线结果表明添加了CeO2的吸附剂通过降低乙烷的吸附容量从而显著提高了吸附分离性能. XRD及XPS结果表明, 和未添加助剂样品相比, 其表面晶体团簇较小, 分散性更好, Cu(II)还原程度更高. 添加CeO2的吸附剂样品5Ce50Cu(CeO2和CuCl2的质量分数(w)分别为5%和50%)获得了最好的吸附分离效果, 相对于未添加CeO2的样品50Cu,其在660 kPa下的吸附选择性由4.2提升到8.7.

English

    1. [1]

      (1) Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335 (6076), 1606. doi: 10.1126/science.1217544(1) Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335 (6076), 1606. doi: 10.1126/science.1217544

    2. [2]

      (2) Shi, M.; Lin, C. C. H.; Kuznicki, T. M.; Hashisho, Z.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (11), 3494. doi: 10.1016/j.ces. 2010.02.048(2) Shi, M.; Lin, C. C. H.; Kuznicki, T. M.; Hashisho, Z.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (11), 3494. doi: 10.1016/j.ces. 2010.02.048

    3. [3]

      (3) Narin, G.; Martins, V. F. D.; Campo, M.; Ribeiro, A. M.; Ferreira, A.; Santos, J. C.; Schumann, K.; Rodrigues, A. E. Sep. Purif. Technol. 2014, 133, 452. doi:10.1016/j.seppur.2014.06.060(3) Narin, G.; Martins, V. F. D.; Campo, M.; Ribeiro, A. M.; Ferreira, A.; Santos, J. C.; Schumann, K.; Rodrigues, A. E. Sep. Purif. Technol. 2014, 133, 452. doi:10.1016/j.seppur.2014.06.060

    4. [4]

      (4) Duan, X.; Zhang, Q.; Cai, J.; Yang, Y.; Cui, Y.; He, Y.; Wu, C.; Krishna, R.; Chen, B.; Qian, G. J. Mater. Chem. A 2014, 2, 2628. doi: 10.1039/c3ta14454b(4) Duan, X.; Zhang, Q.; Cai, J.; Yang, Y.; Cui, Y.; He, Y.; Wu, C.; Krishna, R.; Chen, B.; Qian, G. J. Mater. Chem. A 2014, 2, 2628. doi: 10.1039/c3ta14454b

    5. [5]

      (5) Gucuyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2010, 132 (50), 17704. doi: 10.1021/ja1089765(5) Gucuyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2010, 132 (50), 17704. doi: 10.1021/ja1089765

    6. [6]

      (6) Li, J.; Fu, H. R.; Zhang, J.; Zheng, L. S.; Tao, J. Inorg. Chem. 2015, 54 (7), 3093. doi: 10.1021/acs.inorgchem.5b00316(6) Li, J.; Fu, H. R.; Zhang, J.; Zheng, L. S.; Tao, J. Inorg. Chem. 2015, 54 (7), 3093. doi: 10.1021/acs.inorgchem.5b00316

    7. [7]

      (7) Bao, Z. B.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q. L.; Lu, X. Y.; Deng, S. G. Langmuir 2011, 27 (22), 13554. doi: 10.1021/la2030473(7) Bao, Z. B.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q. L.; Lu, X. Y.; Deng, S. G. Langmuir 2011, 27 (22), 13554. doi: 10.1021/la2030473

    8. [8]

      (8) Geier, S. J.; Mason, J. A.; Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Brown, C. M.; Long, J. R. Chem. Sci. 2013, 4 (5), 2054. doi: 10.1039/c3sc00032j(8) Geier, S. J.; Mason, J. A.; Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Brown, C. M.; Long, J. R. Chem. Sci. 2013, 4 (5), 2054. doi: 10.1039/c3sc00032j

    9. [9]

      (9) Wu, X. F.; Bao, Z. B.; Yuan, B.; Wang, J.; Sun, Y. Q.; Luo, H. M.; Deng, S. G. Microporous Mesoporous Mat. 2013, 180, 114. doi: 10.1016/j.micromeso.2013.06.023(9) Wu, X. F.; Bao, Z. B.; Yuan, B.; Wang, J.; Sun, Y. Q.; Luo, H. M.; Deng, S. G. Microporous Mesoporous Mat. 2013, 180, 114. doi: 10.1016/j.micromeso.2013.06.023

    10. [10]

      (10) Ma, D. Y.; Li, Y. W.; Li, Z. Chem. Commun. 2011, 47 (26), 7377. doi: 10.1039/c1cc11752a(10) Ma, D. Y.; Li, Y. W.; Li, Z. Chem. Commun. 2011, 47 (26), 7377. doi: 10.1039/c1cc11752a

    11. [11]

      (11) Kusgens, P.; Rose, M.; Senkovska, I.; Frode, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mat. 2009, 120, 325. doi: 10.1016/j.micromeso.2008.11.020(11) Kusgens, P.; Rose, M.; Senkovska, I.; Frode, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mat. 2009, 120, 325. doi: 10.1016/j.micromeso.2008.11.020

    12. [12]

      (12) Luo, J. J.; Liu, Y. F.; Sun, W. J.; Jiang, C. F.; Xie, H. P.; Chu, W. Fuel 2014, 123, 241. doi: 10.1016/j.fuel.2014.01.053(12) Luo, J. J.; Liu, Y. F.; Sun, W. J.; Jiang, C. F.; Xie, H. P.; Chu, W. Fuel 2014, 123, 241. doi: 10.1016/j.fuel.2014.01.053

    13. [13]

      (13) Policicchio, A.; Maccallini, E.; Agostino, R. G.; Ciuchi, F.; Aloise, A.; Giordano, G. Fuel 2013, 104, 813. doi: 10.1016/j.fuel.2012.07.035(13) Policicchio, A.; Maccallini, E.; Agostino, R. G.; Ciuchi, F.; Aloise, A.; Giordano, G. Fuel 2013, 104, 813. doi: 10.1016/j.fuel.2012.07.035

    14. [14]

      (14) Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2008, 63 (16), 4171. doi: 10.1016/j.ces. 2008.05.038(14) Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2008, 63 (16), 4171. doi: 10.1016/j.ces. 2008.05.038

    15. [15]

      (15) Anson, A.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (2), 807. doi: 10.1016/j.ces. 2009.09.033(15) Anson, A.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Chem. Eng. Sci. 2010, 65 (2), 807. doi: 10.1016/j.ces. 2009.09.033

    16. [16]

      (16) Feng, Y. Y.; Yang, W.; Chu, W. Chin. Phys. B 2014, 23 (10), 8.(16) Feng, Y. Y.; Yang, W.; Chu, W. Chin. Phys. B 2014, 23 (10), 8.

    17. [17]

      (17) Sun, W. J.; Feng, Y. Y.; Jiang, C. F.; Chu, W. Fuel 2015, 155, 7. doi: 10.1016/j.fuel.2015.03.083(17) Sun, W. J.; Feng, Y. Y.; Jiang, C. F.; Chu, W. Fuel 2015, 155, 7. doi: 10.1016/j.fuel.2015.03.083

    18. [18]

      (18) Luo, J. J.; Liu, Y. F.; Jiang, C. F.; Chu, W.; Wen, J.; Xie, H. P. J. Chem. Eng. Data 2011, 56 (12), 4919. doi: 10.1021/je200834p(18) Luo, J. J.; Liu, Y. F.; Jiang, C. F.; Chu, W.; Wen, J.; Xie, H. P. J. Chem. Eng. Data 2011, 56 (12), 4919. doi: 10.1021/je200834p

    19. [19]

      (19) Costa, E.; Calleja, G.; Marron, C.; Jimenez, A.; Pau, J. J. Chem. Eng. Data 1989, 34 (2), 156. doi: 10.1021/je00056a003(19) Costa, E.; Calleja, G.; Marron, C.; Jimenez, A.; Pau, J. J. Chem. Eng. Data 1989, 34 (2), 156. doi: 10.1021/je00056a003

    20. [20]

      (20) Choi, B. U.; Choi, D. K.; Lee, Y. W.; Lee, B. K.; Kim, S. H. J. Chem. Eng. Data 2003, 48 (3), 603. doi: 10.1021/je020161d(20) Choi, B. U.; Choi, D. K.; Lee, Y. W.; Lee, B. K.; Kim, S. H. J. Chem. Eng. Data 2003, 48 (3), 603. doi: 10.1021/je020161d

    21. [21]

      (21) Huang, H. Y.; Padin, J.; Yang, R. T. Ind. Eng. Chem. Res. 1999, 38 (7), 2720. doi: 10.1021/ie990035b(21) Huang, H. Y.; Padin, J.; Yang, R. T. Ind. Eng. Chem. Res. 1999, 38 (7), 2720. doi: 10.1021/ie990035b

    22. [22]

      (22) Jiang, W. J.; Sun, L. B.; Yin, Y.; Song, X. L.; Liu, X. Q. Sep. Sci. Technol. 2013, 48, 968. doi: 10.1080/01496395.2012.712600(22) Jiang, W. J.; Sun, L. B.; Yin, Y.; Song, X. L.; Liu, X. Q. Sep. Sci. Technol. 2013, 48, 968. doi: 10.1080/01496395.2012.712600

    23. [23]

      (23) Li, B. Y.; Zhang, Y. M.; Krishna, R.; Yao, K. X.; Han, Y.; Wu, Z. L.; Ma, D. X.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S. Q. J. Am. Chem. Soc. 2014, 136 (24), 8654. doi: 10.1021/ja502119z(23) Li, B. Y.; Zhang, Y. M.; Krishna, R.; Yao, K. X.; Han, Y.; Wu, Z. L.; Ma, D. X.; Shi, Z.; Pham, T.; Space, B.; Liu, J.; Thallapally, P. K.; Liu, J.; Chrzanowski, M.; Ma, S. Q. J. Am. Chem. Soc. 2014, 136 (24), 8654. doi: 10.1021/ja502119z

    24. [24]

      (24) Yu, C.; Cowan, M. G.; Noble, R. D.; Zhang, W. Chem. Commun. 2014, 50 (43), 5745. doi: 10.1039/c4cc02143f(24) Yu, C.; Cowan, M. G.; Noble, R. D.; Zhang, W. Chem. Commun. 2014, 50 (43), 5745. doi: 10.1039/c4cc02143f

    25. [25]

      (25) Qin, J. X.; Wang, Z. M.; Liu, X. Q.; Li, Y. X.; Sun, L. B. J. Mater. Chem. A 2015, 3, 12247. doi: 10.1039/C5TA02569A(25) Qin, J. X.; Wang, Z. M.; Liu, X. Q.; Li, Y. X.; Sun, L. B. J. Mater. Chem. A 2015, 3, 12247. doi: 10.1039/C5TA02569A

    26. [26]

      (26) Jiang, W. J.; Yin, Y.; Liu, X. Q.; Yin, X. Q.; Shi, Y. Q.; Sun, L. B. J. Am. Chem. Soc. 2013, 135 (22), 8137. doi: 10.1021/ja4030269(26) Jiang, W. J.; Yin, Y.; Liu, X. Q.; Yin, X. Q.; Shi, Y. Q.; Sun, L. B. J. Am. Chem. Soc. 2013, 135 (22), 8137. doi: 10.1021/ja4030269

    27. [27]

      (27) Cowan, M. G.; McDanel, W. M.; Funke, H. H.; Kohno, Y.; Gin, D. L.; Noble, R. D. Angew. Chem. Int. Edit. 2015, 54 (19), 5740. doi: 10.1002/anie.201500251(27) Cowan, M. G.; McDanel, W. M.; Funke, H. H.; Kohno, Y.; Gin, D. L.; Noble, R. D. Angew. Chem. Int. Edit. 2015, 54 (19), 5740. doi: 10.1002/anie.201500251

    28. [28]

      (28) Wang, K.; Li, X. J.; Ji, S. F.; Shi, X. J.; Tang, J. J. Energy Fuels 2009, 23, 25. doi: 10.1021/ef800553b(28) Wang, K.; Li, X. J.; Ji, S. F.; Shi, X. J.; Tang, J. J. Energy Fuels 2009, 23, 25. doi: 10.1021/ef800553b

    29. [29]

      (29) Ren, H. P.; Song, Y. H.; Wang, W.; Chen, J. G.; Cheng, J.; Jiang, J. Q.; Liu, Z. T.; Liu, Z. W.; Hao, Z. P.; Lu, J. Chem. Eng. J. 2015, 259, 581. doi: 10.1016/j.cej.2014.08.029(29) Ren, H. P.; Song, Y. H.; Wang, W.; Chen, J. G.; Cheng, J.; Jiang, J. Q.; Liu, Z. T.; Liu, Z. W.; Hao, Z. P.; Lu, J. Chem. Eng. J. 2015, 259, 581. doi: 10.1016/j.cej.2014.08.029

    30. [30]

      (30) Wang, N.; Shen, K.; Huang, L. H.; Yu, X. P.; Qian, W. Z.; Chu, W. ACS Catal. 2013, 3 (7), 1638. doi: 10.1021/cs4003113(30) Wang, N.; Shen, K.; Huang, L. H.; Yu, X. P.; Qian, W. Z.; Chu, W. ACS Catal. 2013, 3 (7), 1638. doi: 10.1021/cs4003113

    31. [31]

      (31) Liu, J. X.; Jiang, X. M.; Huang, X. Y.; Wu, S. H. Energy Fuels 2010, 24, 3072. doi: 10.1021/ef100142t(31) Liu, J. X.; Jiang, X. M.; Huang, X. Y.; Wu, S. H. Energy Fuels 2010, 24, 3072. doi: 10.1021/ef100142t

    32. [32]

      (32) Feng, Y. Y.; Jiang, C. F.; Liu, D. J.; Chu, W. J. Anal. Appl. Pyrolysis 2013, 104, 559. doi: 10.1016/j.jaap.2013.05.013(32) Feng, Y. Y.; Jiang, C. F.; Liu, D. J.; Chu, W. J. Anal. Appl. Pyrolysis 2013, 104, 559. doi: 10.1016/j.jaap.2013.05.013

    33. [33]

      (33) Ahmed, M. J.; Theydan, S. K. J. Porous Mat. 2014, 21 (5), 747. doi: 10.1007/s10934-014-9821-8(33) Ahmed, M. J.; Theydan, S. K. J. Porous Mat. 2014, 21 (5), 747. doi: 10.1007/s10934-014-9821-8

    34. [34]

      (34) Hao, S. X..; Wen, J.; Yu, X. P.; Chu, W. Appl. Surf. Sci. 2013, 264, 433. doi: 10.1016/j.apsusc.2012.10.040(34) Hao, S. X..; Wen, J.; Yu, X. P.; Chu, W. Appl. Surf. Sci. 2013, 264, 433. doi: 10.1016/j.apsusc.2012.10.040

    35. [35]

      (35) Feng, Y. Y.; Yang, W.; Liu, D. J.; Chu, W. Chin. J. Chem. 2013, 31 (8), 1102. doi: 10.1002/cjoc.v31.8(35) Feng, Y. Y.; Yang, W.; Liu, D. J.; Chu, W. Chin. J. Chem. 2013, 31 (8), 1102. doi: 10.1002/cjoc.v31.8

    36. [36]

      (36) Kruk, M.; Jaroniec, M. Chem. Mat. 2001, 13 (10), 3169. doi: 10.1021/cm0101069(36) Kruk, M.; Jaroniec, M. Chem. Mat. 2001, 13 (10), 3169. doi: 10.1021/cm0101069

    37. [37]

      (37) Thommes, M. Chem. Ing. Tech. 2010, 82 (7), 1059. doi: 10.1002/cite.201000064(37) Thommes, M. Chem. Ing. Tech. 2010, 82 (7), 1059. doi: 10.1002/cite.201000064

    38. [38]

      (38) Sing, K. S. W.; Williams, R. T. Adsorpt. Sci. Technol. 2004, 22 (10), 773. doi: 10.1260/0263617053499032(38) Sing, K. S. W.; Williams, R. T. Adsorpt. Sci. Technol. 2004, 22 (10), 773. doi: 10.1260/0263617053499032

    39. [39]

      (39) Neimark, A. V.; Ravikovitch, P. I.; Vishnyakov, A. Phys. Rev. E 2000, 62 (2), 1493. doi: 10.1103/PhysRevE.62.R1493(39) Neimark, A. V.; Ravikovitch, P. I.; Vishnyakov, A. Phys. Rev. E 2000, 62 (2), 1493. doi: 10.1103/PhysRevE.62.R1493

    40. [40]

      (40) Ravikovitch, P. I.; Neimark, A. V. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 187, 11.(40) Ravikovitch, P. I.; Neimark, A. V. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 187, 11.

    41. [41]

      (41) Ma, J. H.; Li, L.; Ren, J.; Li, R. F. Sep. Purif. Technol. 2010, 76, 89. doi: 10.1016/j.seppur.2010.09.022(41) Ma, J. H.; Li, L.; Ren, J.; Li, R. F. Sep. Purif. Technol. 2010, 76, 89. doi: 10.1016/j.seppur.2010.09.022

    42. [42]

      (42) Zhang, X. R.; Shi, P. F. J. Mol. Catal. A-Chem. 2003, 194 (1), 99.(42) Zhang, X. R.; Shi, P. F. J. Mol. Catal. A-Chem. 2003, 194 (1), 99.

    43. [43]

      (43) Jing, F. L.; Zhang, Y. Y.; Luo, S. Z.; Chu, W.; Zhang, H.; Shi, X. Y. J. Chem. Sci. 2010, 122 (4), 621. doi: 10.1007/s12039-010-0097-5(43) Jing, F. L.; Zhang, Y. Y.; Luo, S. Z.; Chu, W.; Zhang, H.; Shi, X. Y. J. Chem. Sci. 2010, 122 (4), 621. doi: 10.1007/s12039-010-0097-5

    44. [44]

      (44) Han, T.; Huang, W.; Wang, X. D.; Tang, Y.; Liu, S. Q.; You, X. X. Acta Phys. -Chim. Sin. 2014, 30 (11), 2127. [韩涛, 黄伟, 王晓东, 唐钰, 刘双强, 游向轩. 物理化学学报, 2014, 30 (11), 2127.] doi: 10.3866/PKU.WHXB201409121(44) Han, T.; Huang, W.; Wang, X. D.; Tang, Y.; Liu, S. Q.; You, X. X. Acta Phys. -Chim. Sin. 2014, 30 (11), 2127. [韩涛, 黄伟, 王晓东, 唐钰, 刘双强, 游向轩. 物理化学学报, 2014, 30 (11), 2127.] doi: 10.3866/PKU.WHXB201409121

    45. [45]

      (45) Xie, X. X.; Fei, Z. Y.; Zou, C.; Li, Z. Z.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Acta Phys. -Chim. Sin. 2015, 31 (6), 1153. [谢兴星, 费兆阳, 邹冲, 李郑州, 陈献, 汤吉海, 崔咪芬, 乔旭. 物理化学学报, 2015, 31 (6), 1153.] doi: 10.3866/PKU. WHXB201504145(45) Xie, X. X.; Fei, Z. Y.; Zou, C.; Li, Z. Z.; Chen, X.; Tang, J. H.; Cui, M. F.; Qiao, X. Acta Phys. -Chim. Sin. 2015, 31 (6), 1153. [谢兴星, 费兆阳, 邹冲, 李郑州, 陈献, 汤吉海, 崔咪芬, 乔旭. 物理化学学报, 2015, 31 (6), 1153.] doi: 10.3866/PKU. WHXB201504145

  • 加载中
计量
  • PDF下载量:  41
  • 文章访问数:  455
  • HTML全文浏览量:  26
文章相关
  • 收稿日期:  2015-07-10
  • 网络出版日期:  2015-10-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章