266 nm激光光解C2H5SSC2H5产物的激光诱导荧光光谱

郝海燕 刘振 祖莉莉

引用本文: 郝海燕, 刘振, 祖莉莉. 266 nm激光光解C2H5SSC2H5产物的激光诱导荧光光谱[J]. 物理化学学报, 2015, 31(11): 2029-2035. doi: 10.3866/PKU.WHXB201509231 shu
Citation:  HAO Hai-Yan, LIU Zhen, ZU Li-Li. Laser-Induced Fluorescence Spectra of the Photolyzed Products of C2H5SSC2H5 by 266 nm Laser[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2029-2035. doi: 10.3866/PKU.WHXB201509231 shu

266 nm激光光解C2H5SSC2H5产物的激光诱导荧光光谱

    通讯作者: 祖莉莉
  • 基金项目:

    国家自然科学基金(21373033, 21173024)资助项目 (21373033, 21173024)

摘要: 有机硫化物是大气主要污染物之一, 其在大气中的光解产物还将造成二次污染, 除了存在于有机硫化物中, S―S键还存在于胱氨酸等蛋白质中, S―S键的形成和断裂决定该类蛋白质的活性. 本工作中, 我们研究了用实验室常见的Nd:YAG激光器的四倍频266 nm激光光解C2H5SSC2H5过程, 通过激光诱导荧光(LIF)光谱方法检测乙硫自由基C2H5S等光解产物. 实验表明266 nm激光主要光解C2H5SSC2H5的S―S键产生C2H5S自由基.本文应用密度泛函理论的Becke3-Lee-Yang-Parr 泛函(B3LYP方法)得到C2H5SSC2H5的S―S键、C―S键和C―C键的解离势能曲线, 可知在266 nm光解条件下, C2H5SSC2H5在基态能够发生S―S键、C―S键解离,C―C键不发生解离. 本文采用全活化空间自洽场(CASSCF)方法优化得到态和态的C2H5S自由基结构及其跃迁的绝热激发能, 以辅助解析实验检测的C2H5S自由基的LIF光谱. 实验结合理论计算最终得出, 本实验266 nm光解条件下, C2H5SSC2H5主要发生S―S键解离, 不排除少量分子发生C―S键解离的可能性.

English

    1. [1]

      (1) Orr, W. L.; White, C. M. Geochemistry of Sulfur in Fossil Fuels; American Chemical Society: Washington, DC (US), 1990; pp 10-40.(1) Orr, W. L.; White, C. M. Geochemistry of Sulfur in Fossil Fuels; American Chemical Society: Washington, DC (US), 1990; pp 10-40.

    2. [2]

      (2) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, New Jersey, 2012; pp 2003-2020.(2) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, New Jersey, 2012; pp 2003-2020.

    3. [3]

      (3) Barnes, I.; Hjorth, J.; Mihalopoulos, N. Chem. Rev. 2006, 106 (3), 940. doi: 10.1021/cr020529+(3) Barnes, I.; Hjorth, J.; Mihalopoulos, N. Chem. Rev. 2006, 106 (3), 940. doi: 10.1021/cr020529+

    4. [4]

      (4) Andreae, M. O. Mar. Chem. 1990, 30, 1. doi: 10.1016/0304-4203(90)90059-L(4) Andreae, M. O. Mar. Chem. 1990, 30, 1. doi: 10.1016/0304-4203(90)90059-L

    5. [5]

      (5) Song, W. G.; Li, B. J.; Liu, K. Q. Acta Horticulturae Sinica 2004, 31 (2), 263. [宋卫国, 李宝聚, 刘开启. 园艺学报, 2004, 31 (2), 263.](5) Song, W. G.; Li, B. J.; Liu, K. Q. Acta Horticulturae Sinica 2004, 31 (2), 263. [宋卫国, 李宝聚, 刘开启. 园艺学报, 2004, 31 (2), 263.]

    6. [6]

      (6) Jansen, H.; Mü ller, B.; Knobloch, K. Planta Med. 1989, 55 (5), 440. doi: 10.1055/s-2006-962060(6) Jansen, H.; Mü ller, B.; Knobloch, K. Planta Med. 1989, 55 (5), 440. doi: 10.1055/s-2006-962060

    7. [7]

      (7) Yu, W. T.; Lu, D. Q.; Li, H. 2004, 21, 795. [于文涛, 卢定强. 精细化工, 2004, 21, 795.](7) Yu, W. T.; Lu, D. Q.; Li, H. 2004, 21, 795. [于文涛, 卢定强. 精细化工, 2004, 21, 795.]

    8. [8]

      (8) Silva Filho, E. C.; Lima, L. C.; Silva, F. C.; Sousa, K. S.; Fonseca, M. G.; Santana, S. A. Carbohydr. Polym. 2013, 92 (2), 1203. doi: 10.1016/j.carbpol.2012.10.031(8) Silva Filho, E. C.; Lima, L. C.; Silva, F. C.; Sousa, K. S.; Fonseca, M. G.; Santana, S. A. Carbohydr. Polym. 2013, 92 (2), 1203. doi: 10.1016/j.carbpol.2012.10.031

    9. [9]

      (9) Matsumura, S.; Kihara, N.; Takata, T. Macromolecules 2001, 34 (9), 2848. doi: 10.1021/ma001666g(9) Matsumura, S.; Kihara, N.; Takata, T. Macromolecules 2001, 34 (9), 2848. doi: 10.1021/ma001666g

    10. [10]

      (10) Visscher, P. T.; Taylor, B. F. Appl. Environ. Microb. 1993, 59 (12), 4083.(10) Visscher, P. T.; Taylor, B. F. Appl. Environ. Microb. 1993, 59 (12), 4083.

    11. [11]

      (11) Iozzi, M. F.; Helgaker, T. J. Phys. Chem. A 2011, 115 (11), 2308. doi: 10.1021/jp109428g(11) Iozzi, M. F.; Helgaker, T. J. Phys. Chem. A 2011, 115 (11), 2308. doi: 10.1021/jp109428g

    12. [12]

      (12) Zhang, Y. H. P.; Evans, B. R.; Mielenz, J. R.; Hopkins, R. C.; Adams, M. W. PloS One 2007, 2 (5), e456.(12) Zhang, Y. H. P.; Evans, B. R.; Mielenz, J. R.; Hopkins, R. C.; Adams, M. W. PloS One 2007, 2 (5), e456.

    13. [13]

      (13) Karolczak, J.; Grev, R. S.; Clouthier, D. J. J. Chem. Phys. 1994, 101 (2), 891. doi: 10.1063/1.467742(13) Karolczak, J.; Grev, R. S.; Clouthier, D. J. J. Chem. Phys. 1994, 101 (2), 891. doi: 10.1063/1.467742

    14. [14]

      (14) Johnson, M.; Zare, R.; Rostas, J.; Leach, S. J. Chem. Phys. 1984, 80 (6), 2407. doi: 10.1063/1.446991(14) Johnson, M.; Zare, R.; Rostas, J.; Leach, S. J. Chem. Phys. 1984, 80 (6), 2407. doi: 10.1063/1.446991

    15. [15]

      (15) Nakajima, M.; Miyoshi, A.; Sumiyoshi, Y.; Endo, Y. J. Chem. Phys. 2012, 136 (18), 184311. doi: 10.1063/1.4708809(15) Nakajima, M.; Miyoshi, A.; Sumiyoshi, Y.; Endo, Y. J. Chem. Phys. 2012, 136 (18), 184311. doi: 10.1063/1.4708809

    16. [16]

      (16) Carter, C. C.; Atwell, J. R.; Gopalakrishnan, S.; Miller, T. A. J. Phys. Chem. A 2000, 104 (40), 9165. doi: 10.1021/jp001835z(16) Carter, C. C.; Atwell, J. R.; Gopalakrishnan, S.; Miller, T. A. J. Phys. Chem. A 2000, 104 (40), 9165. doi: 10.1021/jp001835z

    17. [17]

      (17) Nakajima, M.; Toyoshima, H.; Sato, S.; Tanaka, K.; Hoshina, K.; Kohguchi, H.; Sumiyoshi, Y.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 2013, 138 (16), 164309. doi: 10.1063/1.4802003(17) Nakajima, M.; Toyoshima, H.; Sato, S.; Tanaka, K.; Hoshina, K.; Kohguchi, H.; Sumiyoshi, Y.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 2013, 138 (16), 164309. doi: 10.1063/1.4802003

    18. [18]

      (18) Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1997, 106 (13), 5429. doi: 10.1063/1.473568(18) Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1997, 106 (13), 5429. doi: 10.1063/1.473568

    19. [19]

      (19) Hoshina, K.; Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1998, 108 (9), 3465. doi: 10.1063/1.475746(19) Hoshina, K.; Kohguchi, H.; Ohshima, Y.; Endo, Y. J. Chem. Phys. 1998, 108 (9), 3465. doi: 10.1063/1.475746

    20. [20]

      (20) Chalyavi, N.; Troy, T. P.; Nakajima, M.; Gibson, B. A.; Nauta, K.; Sharp, R. G.; Kable, S. H.; Schmidt, T. W. J. Phys. Chem. A 2011, 115 (27), 7959. doi: 10.1021/jp203638h(20) Chalyavi, N.; Troy, T. P.; Nakajima, M.; Gibson, B. A.; Nauta, K.; Sharp, R. G.; Kable, S. H.; Schmidt, T. W. J. Phys. Chem. A 2011, 115 (27), 7959. doi: 10.1021/jp203638h

    21. [21]

      (21) Wine, P.; Nicovich, J.; Hynes, A.; Wells, J. J. Phys. Chem. 1986, 90 (17), 4033. doi: 10.1021/j100408a041(21) Wine, P.; Nicovich, J.; Hynes, A.; Wells, J. J. Phys. Chem. 1986, 90 (17), 4033. doi: 10.1021/j100408a041

    22. [22]

      (22) Colin, R.; Goldfinger, P.; Jeunehomme, M. Trans. Faraday Soc. 1964, 60, 306. doi: 10.1039/tf9646000306(22) Colin, R.; Goldfinger, P.; Jeunehomme, M. Trans. Faraday Soc. 1964, 60, 306. doi: 10.1039/tf9646000306

    23. [23]

      (23) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. A. Chem. Phys. Lett. 1991, 183 (5), 348. doi: 10.1016/0009-2614(91)90391-L(23) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. A. Chem. Phys. Lett. 1991, 183 (5), 348. doi: 10.1016/0009-2614(91)90391-L

    24. [24]

      (24) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. Chem. Phys. Lett. 1992, 190 (5), 469. doi: 10.1016/0009-2614(92)85175-A(24) Nourbakhsh, S.; Yin, H. M.; Liao, C. L.; Ng, C. Y. Chem. Phys. Lett. 1992, 190 (5), 469. doi: 10.1016/0009-2614(92)85175-A

    25. [25]

      (25) Peng, B.; Cao, J. R.; Wen, Y.; Zhong, X.; Zhang, J. M.; Gu, H. G.; Fang, W. G.; Wu, X. J.; Zhu, Q. H. Acta Phys. -Chim. Sin. 1988, 4 (3), 225. [彭勃, 曹建如, 温晔, 钟宪, 张建明, 顾好刚, 方万全, 武小军, 朱起鹤. 物理化学学报, 1988, 4 (3), 225.] doi: 10.3866/PKU.WHXB19880301(25) Peng, B.; Cao, J. R.; Wen, Y.; Zhong, X.; Zhang, J. M.; Gu, H. G.; Fang, W. G.; Wu, X. J.; Zhu, Q. H. Acta Phys. -Chim. Sin. 1988, 4 (3), 225. [彭勃, 曹建如, 温晔, 钟宪, 张建明, 顾好刚, 方万全, 武小军, 朱起鹤. 物理化学学报, 1988, 4 (3), 225.] doi: 10.3866/PKU.WHXB19880301

    26. [26]

      (26) Ross, P. L.; Johnston, M. V. J. Phys. Chem. 1993, 97 (41), 10725. doi: 10.1021/j100143a034(26) Ross, P. L.; Johnston, M. V. J. Phys. Chem. 1993, 97 (41), 10725. doi: 10.1021/j100143a034

    27. [27]

      (27) Balla, R. J.; Weiner, B. R.; Nelson, H. H. J. Am. Chem. Soc. 1987, 109 (16), 4804. doi: 10.1021/ja00250a008(27) Balla, R. J.; Weiner, B. R.; Nelson, H. H. J. Am. Chem. Soc. 1987, 109 (16), 4804. doi: 10.1021/ja00250a008

    28. [28]

      (28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Wallingford, CT: Gaussian Inc., 2004(28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Wallingford, CT: Gaussian Inc., 2004

    29. [29]

      (29) Hung, W. C.; Shen, M. Y.; Yu, C. H.; Lee, Y. P. J. Chem. Phys. 1996, 105 (14), 5722. doi: 10.1063/1.472543(29) Hung, W. C.; Shen, M. Y.; Yu, C. H.; Lee, Y. P. J. Chem. Phys. 1996, 105 (14), 5722. doi: 10.1063/1.472543

    30. [30]

      (30) Nourbakhsh, S.; Liao, C. L.; Ng, C. J. Chem. Phys. 1990, 92 (11), 6587. doi: 10.1063/1.458295(30) Nourbakhsh, S.; Liao, C. L.; Ng, C. J. Chem. Phys. 1990, 92 (11), 6587. doi: 10.1063/1.458295

    31. [31]

      (31) Zhao, H. Q.; Cheung, Y. S.; Liao, C. X.; Ng, C.; Li, W. K.; Chiu, S. W. J. Chem. Phys. 1996, 104 (1), 130. doi: 10.1063/1.470883(31) Zhao, H. Q.; Cheung, Y. S.; Liao, C. X.; Ng, C.; Li, W. K.; Chiu, S. W. J. Chem. Phys. 1996, 104 (1), 130. doi: 10.1063/1.470883

    32. [32]

      (32) Munk, J.; Pagsberg, P.; Ratajczak, E.; Sillesen, A. J. Phys. Chem. 1986, 90 (12), 2752. doi: 10.1021/j100403a038(32) Munk, J.; Pagsberg, P.; Ratajczak, E.; Sillesen, A. J. Phys. Chem. 1986, 90 (12), 2752. doi: 10.1021/j100403a038

    33. [33]

      (33) Quick, C., Jr.; Weston, R. E., Jr. J. Chem. Phys. 1981, 74 (9), 4951. doi: 10.1063/1.441748(33) Quick, C., Jr.; Weston, R. E., Jr. J. Chem. Phys. 1981, 74 (9), 4951. doi: 10.1063/1.441748

  • 加载中
计量
  • PDF下载量:  56
  • 文章访问数:  827
  • HTML全文浏览量:  20
文章相关
  • 收稿日期:  2015-07-20
  • 网络出版日期:  2015-09-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章