多肽诱导的巨型脂质体出芽和泄露行为

孙建波 夏玉琼 于秋红 梁德海

引用本文: 孙建波, 夏玉琼, 于秋红, 梁德海. 多肽诱导的巨型脂质体出芽和泄露行为[J]. 物理化学学报, 2015, 31(10): 1985-1990. doi: 10.3866/PKU.WHXB201508262 shu
Citation:  SUN Jian-Bo, XIA Yu-Qiong, YU Qiu-Hong, LIANG De-Hai. Peptide-Induced Budding and Leakage Behavior of Giant Vesicles[J]. Acta Physico-Chimica Sinica, 2015, 31(10): 1985-1990. doi: 10.3866/PKU.WHXB201508262 shu

多肽诱导的巨型脂质体出芽和泄露行为

  • 基金项目:

    国家自然科学基金(21074005, 21174007)资助项目 (21074005, 21174007)

摘要:

细胞膜与膜蛋白之间的相互作用与生命中许多过程息息相关. 以巨型脂质体(GUV)和多肽分别作为细胞膜和膜蛋白的简化模型, 我们设计了四种仅包含亮氨酸(L)和赖氨酸(K)的多肽, 即K14、(KL2KL2K)2、(KL2KL3)2和K6L8, 并对比研究了它们与中性和负电性脂质体的相互作用. 电荷密度最高的K14只是涂层在脂质体表面, 不破其囊泡结构, 但能够引起负电性脂质体发生微相分离, 属建设性相互作用. 能够形成两亲性α螺旋的(KL2KL2K)2和(KL2KL3)2则引起脂质体发生泄露和破裂, 属破坏性作用. 但二者引起泄露的速率在中性脂质体和负电性脂质体中的结果恰好相反, 说明泄露分两步进行: 表面吸附多肽达到一定浓度, 继而对膜进行干扰. 表面活性剂型多肽K6L8的氨基酸组成与(KL2KL2K)2相同, 但K6L8只是引起负电性脂质体发生泄露, 造成中性脂质体发生外出芽. 这些简单氨基酸造成的脂质体的复杂构象变化可以统一用静电和疏水相互作用在膜上的位置和强度来进行解释. 这些结论对于深入理解膜蛋白的作用机理是有帮助的.

English

    1. [1]

      (1) McMahon, H. T.; Gallop, J. L. Nature 2005, 438 (7068), 590. doi: 10.1038/nature04396

      (1) McMahon, H. T.; Gallop, J. L. Nature 2005, 438 (7068), 590. doi: 10.1038/nature04396

    2. [2]

      (2) Hinshaw, J. E.; Schmid, S. L. Nature 1995, 374 (6518), 190. doi: 10.1038/374190a0(2) Hinshaw, J. E.; Schmid, S. L. Nature 1995, 374 (6518), 190. doi: 10.1038/374190a0

    3. [3]

      (3) Artalejo, C. R.; Elhamdani, A.; Palfrey, H. C. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (9), 6358. doi:10.1073/pnas.082658499(3) Artalejo, C. R.; Elhamdani, A.; Palfrey, H. C. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (9), 6358. doi:10.1073/pnas.082658499

    4. [4]

      (4) Antonny, B.; unon, P.; Schekman, R.; Orci, L. Embo Reports 2003, 4 (4), 419. doi: 10.1038/sj.embor.embor812(4) Antonny, B.; unon, P.; Schekman, R.; Orci, L. Embo Reports 2003, 4 (4), 419. doi: 10.1038/sj.embor.embor812

    5. [5]

      (5) Fertuck, H. C.; Salpeter, M. M. Proceedings of the National Academy of Sciences of the United States of America 1974, 71 (4), 1376. doi: 10.1073/pnas.71.4.1376(5) Fertuck, H. C.; Salpeter, M. M. Proceedings of the National Academy of Sciences of the United States of America 1974, 71 (4), 1376. doi: 10.1073/pnas.71.4.1376

    6. [6]

      (6) Unwin, N. Journal of Molecular Biology 2005, 346 (4), 967. doi: 10.1016/j.jmb.2004.12.031(6) Unwin, N. Journal of Molecular Biology 2005, 346 (4), 967. doi: 10.1016/j.jmb.2004.12.031

    7. [7]

      (7) Eckler, S. A.; Kuehn, R.; Gautam, M. Neuroscience 2005, 131 (3), 661. doi: 10.1016/j.neuroscience.2004.11.035(7) Eckler, S. A.; Kuehn, R.; Gautam, M. Neuroscience 2005, 131 (3), 661. doi: 10.1016/j.neuroscience.2004.11.035

    8. [8]

      (8) Daniel, R.; Schuck, N. W.; Niv, Y. Proceedings of the National Academy of Sciences of the United States of America 2015, 112 (10), 2929. doi: 10.1073/pnas.1500975112(8) Daniel, R.; Schuck, N. W.; Niv, Y. Proceedings of the National Academy of Sciences of the United States of America 2015, 112 (10), 2929. doi: 10.1073/pnas.1500975112

    9. [9]

      (9) Bentley, J. L. Commun. ACM 1980, 23 (4), 214. doi: 10.1145/358841.358850(9) Bentley, J. L. Commun. ACM 1980, 23 (4), 214. doi: 10.1145/358841.358850

    10. [10]

      (10) Brogden, K. A. Nature Reviews Microbiology 2005, 3 (3), 238. doi: 10.1038/nrmicro1098(10) Brogden, K. A. Nature Reviews Microbiology 2005, 3 (3), 238. doi: 10.1038/nrmicro1098

    11. [11]

      (11) Holt, A.; Killian, J. A. European Biophysics Journal with Biophysics Letters 2010, 39 (4), 609. doi: 10.1007/s00249-009-0567-1(11) Holt, A.; Killian, J. A. European Biophysics Journal with Biophysics Letters 2010, 39 (4), 609. doi: 10.1007/s00249-009-0567-1

    12. [12]

      (12) Frankel, A. D.; Pabo, C. O. Cell 1988, 55 (6), 1189. doi: 10.1016/0092-8674(88)90263-2(12) Frankel, A. D.; Pabo, C. O. Cell 1988, 55 (6), 1189. doi: 10.1016/0092-8674(88)90263-2

    13. [13]

      (13) Marsden, H. R.; Tomatsu, I.; Kros, A. Chemical Society Reviews 2011, 40 (3), 1572. doi: 10.1039/C0CS00115E(13) Marsden, H. R.; Tomatsu, I.; Kros, A. Chemical Society Reviews 2011, 40 (3), 1572. doi: 10.1039/C0CS00115E

    14. [14]

      (14) Liang, X. Y.; Li, L.; Qiu, F.; Yang, Y. L. Physica A-Statistical Mechanics and Its Applications 2010, 389 (19), 39651.(14) Liang, X. Y.; Li, L.; Qiu, F.; Yang, Y. L. Physica A-Statistical Mechanics and Its Applications 2010, 389 (19), 39651.

    15. [15]

      (15) Yang, K.; Ma, Y. Q. Journal of Physical Chemistry B 2009, 113 (4), 1048. doi: 10.1021/jp805551s(15) Yang, K.; Ma, Y. Q. Journal of Physical Chemistry B 2009, 113 (4), 1048. doi: 10.1021/jp805551s

    16. [16]

      (16) Cai, C.; Wang, L.; Lin, J. Chemical Communications 2011, 47 (40), 11189. doi: 10.1039/c1cc12683k(16) Cai, C.; Wang, L.; Lin, J. Chemical Communications 2011, 47 (40), 11189. doi: 10.1039/c1cc12683k

    17. [17]

      (17) Deng, Y. B.; Hu, B. W.; Zhou, P. Acta Phys. -Chim. Sin. 2009, 25 (7), 1427. [邓益斌, 胡炳文, 周平. 物理化学学报, 2009, 25 (7), 1427.] doi: 10.3866/PKU.WHXB20090738(17) Deng, Y. B.; Hu, B. W.; Zhou, P. Acta Phys. -Chim. Sin. 2009, 25 (7), 1427. [邓益斌, 胡炳文, 周平. 物理化学学报, 2009, 25 (7), 1427.] doi: 10.3866/PKU.WHXB20090738

    18. [18]

      (18) Deng, L.; Liang, D. H. Acta Phys. -Chim. Sin. 2010, 26 (4), 862. [邓林, 梁德海. 物理化学学报, 2010, 26 (4), 862.] doi: 10.3866/PKU.WHXB20100422(18) Deng, L.; Liang, D. H. Acta Phys. -Chim. Sin. 2010, 26 (4), 862. [邓林, 梁德海. 物理化学学报, 2010, 26 (4), 862.] doi: 10.3866/PKU.WHXB20100422

    19. [19]

      (19) Wu, Q. Y.; Liang, Q. Langmuir 2014, 30 (4), 1116. doi: 10.1021/la4039123(19) Wu, Q. Y.; Liang, Q. Langmuir 2014, 30 (4), 1116. doi: 10.1021/la4039123

    20. [20]

      (20) Kashiwada, A.; Hiroaki, H.; Kohda, D.; Nan , M.; Tanaka, T. Journal of the American Chemical Society 2000, 122 (2), 212. doi: 10.1021/ja993190q(20) Kashiwada, A.; Hiroaki, H.; Kohda, D.; Nan , M.; Tanaka, T. Journal of the American Chemical Society 2000, 122 (2), 212. doi: 10.1021/ja993190q

    21. [21]

      (21) Beevers, A. J.; Dixon, A. M. Chemical Society Reviews 2010, 39 (6), 2146. doi: 10.1039/b912944h(21) Beevers, A. J.; Dixon, A. M. Chemical Society Reviews 2010, 39 (6), 2146. doi: 10.1039/b912944h

    22. [22]

      (22) Shimanouchi, T.; Umakoshi, H.; Kuboi, R. Langmuir 2009, 25 (9), 4835. doi: 10.1021/la8040488(22) Shimanouchi, T.; Umakoshi, H.; Kuboi, R. Langmuir 2009, 25 (9), 4835. doi: 10.1021/la8040488

    23. [23]

      (23) Dimitrov, D. S.; Angelova, M. I. Journal of Electroanalytical Chemistry 1988, 253 (2), 323. doi: 10.1016/0022-0728(88)87069-4(23) Dimitrov, D. S.; Angelova, M. I. Journal of Electroanalytical Chemistry 1988, 253 (2), 323. doi: 10.1016/0022-0728(88)87069-4

    24. [24]

      (24) Estes, D. J.; Mayer, M. Colloids and Surfaces B-Biointerfaces 2005, 42 (2), 115. doi: 10.1016/j.colsurfb.2005.01.016(24) Estes, D. J.; Mayer, M. Colloids and Surfaces B-Biointerfaces 2005, 42 (2), 115. doi: 10.1016/j.colsurfb.2005.01.016

    25. [25]

      (25) Wheaten, S., A.; Lakshmanan, A.; Almeida, P., F. Biophysical Journal 2013, 105 (2), 432. doi: 10.1016/j.bpj.2013.05.055(25) Wheaten, S., A.; Lakshmanan, A.; Almeida, P., F. Biophysical Journal 2013, 105 (2), 432. doi: 10.1016/j.bpj.2013.05.055

    26. [26]

      (26) Sun, J.; Xia, Y.; Li, D.; Du, Q.; Liang, D. Biochim. Biophys. Acta 2014, 1838 (12), 2985. doi: 10.1016/j.bbamem.2014.08.018(26) Sun, J.; Xia, Y.; Li, D.; Du, Q.; Liang, D. Biochim. Biophys. Acta 2014, 1838 (12), 2985. doi: 10.1016/j.bbamem.2014.08.018

    27. [27]

      (27) Nizet, V. Current Issues in Molecular Biology 2006, 8, 11.(27) Nizet, V. Current Issues in Molecular Biology 2006, 8, 11.

    28. [28]

      (28) Döbereiner, H. G.; Käs, J.; Noppl, D.; Sprenger, I.; Sackmann, E. Biophysical Journal 1993, 65 (4), 1396. doi: 10.1016/S0006-3495(93)81203-7(28) Döbereiner, H. G.; Käs, J.; Noppl, D.; Sprenger, I.; Sackmann, E. Biophysical Journal 1993, 65 (4), 1396. doi: 10.1016/S0006-3495(93)81203-7

    29. [29]

      (29) Käs, J.; Sackmann, E. Biophysical Journal 1991, 60 (4), 8254.(29) Käs, J.; Sackmann, E. Biophysical Journal 1991, 60 (4), 8254.

    30. [30]

      (30) Hristova, K.; Dempsey, C. E.; White, S. H. Biophysical Journal 2001, 80 (2), 801. doi: 10.1016/S0006-3495(01)76059-6(30) Hristova, K.; Dempsey, C. E.; White, S. H. Biophysical Journal 2001, 80 (2), 801. doi: 10.1016/S0006-3495(01)76059-6

    31. [31]

      (31) Hong, B. B.; Qiu, F.; Zhang, H. D.; Yang, Y. L. J. Phys. Chem. B 2007, 111, 5837(31) Hong, B. B.; Qiu, F.; Zhang, H. D.; Yang, Y. L. J. Phys. Chem. B 2007, 111, 5837

    32. [32]

      (32) Su, C.; Xia, Y.; Sun, J.; Wang, N.; Zhu, L.; Chen, T.; Huang, Y.; Liang, D. Langmuir 2014, 30 (21), 6219. doi: 10.1021/la501296r

      (32) Su, C.; Xia, Y.; Sun, J.; Wang, N.; Zhu, L.; Chen, T.; Huang, Y.; Liang, D. Langmuir 2014, 30 (21), 6219. doi: 10.1021/la501296r

  • 加载中
计量
  • PDF下载量:  89
  • 文章访问数:  382
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2015-10-10
  • 收稿日期:  2015-05-04
  • 网络出版日期:  2015-08-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章