基于曲率和电子结构的掺杂C50和C70富勒烯的稳定性研究

包金小 王晓霞 吴铜伟 贾桂霄 章永凡

引用本文: 包金小, 王晓霞, 吴铜伟, 贾桂霄, 章永凡. 基于曲率和电子结构的掺杂C50和C70富勒烯的稳定性研究[J]. 物理化学学报, 2015, 31(5): 899-904. doi: 10.3866/PKU.WHXB201503201 shu
Citation:  BAO Jin-Xiao, WANG Xiao-Xia, WU Tong-Wei, JIA Gui-Xiao, ZHANG Yong-Fan. Stability of Doped C50 and C70 Based on Curvature and Electronic Structures[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 899-904. doi: 10.3866/PKU.WHXB201503201 shu

基于曲率和电子结构的掺杂C50和C70富勒烯的稳定性研究

  • 基金项目:

    内蒙古科技大学材料与冶金学院青年人才孵化器基金(2014CY012) (2014CY012)

    内蒙古自治区高等学校科学技术研究项目基金(NJZZ13128) (NJZZ13128)

    内蒙古自治区自然科学基金(2014BS0507)资助项目 (2014BS0507)

摘要:

使用密度泛函理论(DFT)-B3LYP/6-31G*方法研究了B、N、Si、P和Co在C50和C70中的掺杂能和电子结构, 并基于曲率理论和电子结构探讨了掺杂富勒烯的结构稳定性. 计算结果表明, 掺杂能随着原子曲率的增大而减小, 随着掺杂物种原子半径的增大而增大, B、N、P和Co的掺杂有利于C50结构的稳定, 而B和N的掺杂不利于C70结构的稳定; 除了用于反映原子活性的曲率主要决定掺杂反应性, 各不等价碳原子在C50和C70的最高占据分子轨道(HOMO)中所占成分对掺杂能的影响也很大, 且其成分越大越有利于掺杂. 此外, 掺杂原子得失电子情况与其电负性有关. 本工作将为富勒烯结构稳定性的研究提供理论依据.

English

    1. [1]

      (1) Kroto, H.W. Nature 1987, 329, 529. doi: 10.1038/329529a0

      (1) Kroto, H.W. Nature 1987, 329, 529. doi: 10.1038/329529a0

    2. [2]

      (2) Albertazzi, E.; Domene, C.; Fowler, P.W.; Heine, T.; Seifert, G.; Van Alsenoy, C.; Zerbetto, F. Phys. Chem. Chem. Phys. 1999, 12, 2913.(2) Albertazzi, E.; Domene, C.; Fowler, P.W.; Heine, T.; Seifert, G.; Van Alsenoy, C.; Zerbetto, F. Phys. Chem. Chem. Phys. 1999, 12, 2913.

    3. [3]

      (3) Lu, X.; Chen, Z. F. Chem. Rev. 2005, 105, 3643. doi: 10.1021/cr030093d(3) Lu, X.; Chen, Z. F. Chem. Rev. 2005, 105, 3643. doi: 10.1021/cr030093d

    4. [4]

      (4) Li, J. Q.; Jia, G. X.; Zhang, Y. F. Chem. Eur. J. 2007, 13, 6430.(4) Li, J. Q.; Jia, G. X.; Zhang, Y. F. Chem. Eur. J. 2007, 13, 6430.

    5. [5]

      (5) Xie, S. Y.; Gao, F.; Lu, X.; Bin, R. B.; Wang, C. R.; Zhang, X.; Liu, M. L.; Deng, S. L.; Zheng, L. S. Science 2004, 304, 699. doi: 10.1126/science.1095567(5) Xie, S. Y.; Gao, F.; Lu, X.; Bin, R. B.; Wang, C. R.; Zhang, X.; Liu, M. L.; Deng, S. L.; Zheng, L. S. Science 2004, 304, 699. doi: 10.1126/science.1095567

    6. [6]

      (6) Hummelen, J. C.; Bellavia-Lund, C.; Wudl, F. Top. Curr. Chem. 1999, 199, 93. doi: 10.1007/3-540-68117-5(6) Hummelen, J. C.; Bellavia-Lund, C.; Wudl, F. Top. Curr. Chem. 1999, 199, 93. doi: 10.1007/3-540-68117-5

    7. [7]

      (7) Hirsch, A.; Brettreich, M. Heterofullerenes. Fullerenes, Chemistry and Reactions, 2nd ed.; Wiley-VCH:Weinheim, Germany, 2005; p 359.(7) Hirsch, A.; Brettreich, M. Heterofullerenes. Fullerenes, Chemistry and Reactions, 2nd ed.; Wiley-VCH:Weinheim, Germany, 2005; p 359.

    8. [8]

      (8) Hirsch, A.; Nuber, B. Accounts Chem. Res. 1999, 32, 795. doi: 10.1021/ar980113b(8) Hirsch, A.; Nuber, B. Accounts Chem. Res. 1999, 32, 795. doi: 10.1021/ar980113b

    9. [9]

      (9) Vostrowsky, O.; Hirsch, A. Chem. Rev. 2006, 106, 5191. doi: 10.1021/cr050561e(9) Vostrowsky, O.; Hirsch, A. Chem. Rev. 2006, 106, 5191. doi: 10.1021/cr050561e

    10. [10]

      (10) Clemmer, D. E.; Hunter, J. M.; Shelimov, K. B.; Jarrold, M. F. Nature 1994, 372, 248. doi: 10.1038/372248a0(10) Clemmer, D. E.; Hunter, J. M.; Shelimov, K. B.; Jarrold, M. F. Nature 1994, 372, 248. doi: 10.1038/372248a0

    11. [11]

      (11) Kong, Q.; Shen, Y.; Zhao, L.; Zhuang, J.; Qian, S.; Li, Y.; Lin, Y.; Cai, R. J. Chem. Phys. 2002, 116, 128.(11) Kong, Q.; Shen, Y.; Zhao, L.; Zhuang, J.; Qian, S.; Li, Y.; Lin, Y.; Cai, R. J. Chem. Phys. 2002, 116, 128.

    12. [12]

      (12) Ding, C. G.; Yang, J. L.; Han, R. S.; Wang, K. L. Phys. Rev. A 2001, 64, 043201.(12) Ding, C. G.; Yang, J. L.; Han, R. S.; Wang, K. L. Phys. Rev. A 2001, 64, 043201.

    13. [13]

      (13) Viani, L.; Dos Santos, M. C. Solid State Commun. 2006, 138, 498. doi: 10.1016/j.ssc.2006.04.027(13) Viani, L.; Dos Santos, M. C. Solid State Commun. 2006, 138, 498. doi: 10.1016/j.ssc.2006.04.027

    14. [14]

      (14) Yang, Z. Y.; Xu, X. F.; Wang, G. C.; Shang, Z. F.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z. J. Mol. Struct.: Theochem 2002, 618, 191. doi: 10.1016/S0166-1280(02)00402-5(14) Yang, Z. Y.; Xu, X. F.; Wang, G. C.; Shang, Z. F.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z. J. Mol. Struct.: Theochem 2002, 618, 191. doi: 10.1016/S0166-1280(02)00402-5

    15. [15]

      (15) Kurita, N.; Koboyyashi, K.; Kumabora, H.; Ta , K.; Ozawa, K. Chem. Phys. Lett. 1992, 198, 95. doi: 10.1016/0009-2614(92)90054-Q(15) Kurita, N.; Koboyyashi, K.; Kumabora, H.; Ta , K.; Ozawa, K. Chem. Phys. Lett. 1992, 198, 95. doi: 10.1016/0009-2614(92)90054-Q

    16. [16]

      (16) Wang, S. H.; Chen, F.; Fann, Y. C.; Kashani, M.; Malaty, M.; Jansen, S. A. J. Phys. Chem. 1995, 99, 6801. doi: 10.1021/j100018a008(16) Wang, S. H.; Chen, F.; Fann, Y. C.; Kashani, M.; Malaty, M.; Jansen, S. A. J. Phys. Chem. 1995, 99, 6801. doi: 10.1021/j100018a008

    17. [17]

      (17) Ewels, C. P. Nano Lett. 2006, 6, 890. doi: 10.1021/nl051421n(17) Ewels, C. P. Nano Lett. 2006, 6, 890. doi: 10.1021/nl051421n

    18. [18]

      (18) Zuo, T. M.; Xu, L. S.; Beavers, C. M.; Olmstead, M. M.; Fu, W. J.; Crawford, D.; Balch, A. L.; Dorn, H. C. J. Am. Chem. Soc. 2008, 130, 12992. doi: 10.1021/ja802417d(18) Zuo, T. M.; Xu, L. S.; Beavers, C. M.; Olmstead, M. M.; Fu, W. J.; Crawford, D.; Balch, A. L.; Dorn, H. C. J. Am. Chem. Soc. 2008, 130, 12992. doi: 10.1021/ja802417d

    19. [19]

      (19) Stevenson, S.; Ling, Y.; Coumbe, C. E.; Mackey, M. A.; Confait, B. S.; Phillips, J. P.; Dorn, H. C.; Zhang, Y. J. Am. Chem. Soc. 2009, 131, 17780. doi: 10.1021/ja908370t(19) Stevenson, S.; Ling, Y.; Coumbe, C. E.; Mackey, M. A.; Confait, B. S.; Phillips, J. P.; Dorn, H. C.; Zhang, Y. J. Am. Chem. Soc. 2009, 131, 17780. doi: 10.1021/ja908370t

    20. [20]

      (20) Breslavskaya, N. N.; Levin, A. A.; Buchachenko, A. L. Russ. Chem. Bull. 2004, 53, 18. doi: 10.1023/B:RUCB.0000024824.35542.0e(20) Breslavskaya, N. N.; Levin, A. A.; Buchachenko, A. L. Russ. Chem. Bull. 2004, 53, 18. doi: 10.1023/B:RUCB.0000024824.35542.0e

    21. [21]

      (21) Chen, Z.; Jiao, H.; Buhl, M.; Hirsch, A.; Thiel, W. Theor. Chem. Acc. 2001, 106, 352. doi: 10.1007/s002140100284(21) Chen, Z.; Jiao, H.; Buhl, M.; Hirsch, A.; Thiel, W. Theor. Chem. Acc. 2001, 106, 352. doi: 10.1007/s002140100284

    22. [22]

      (22) Hauke, F.; Hirsch, A.; Liu, S. G.; Eche yen, L.; Swartz, A.; Luo, C.; Guldi, D. M. Chem. Phys. Chem. 2002, 3, 195.(22) Hauke, F.; Hirsch, A.; Liu, S. G.; Eche yen, L.; Swartz, A.; Luo, C.; Guldi, D. M. Chem. Phys. Chem. 2002, 3, 195.

    23. [23]

      (23) Vougioukalakis, G. C.; Orfanopoulos, M. J. Am. Chem. Soc. 2004, 126, 15956. doi: 10.1021/ja045495x(23) Vougioukalakis, G. C.; Orfanopoulos, M. J. Am. Chem. Soc. 2004, 126, 15956. doi: 10.1021/ja045495x

    24. [24]

      (24) Vougioukalakis, G. C.; Hatzimarinaki, M.; Lykakis, I. N.; Orfanopoulos, M. J. Org. Chem. 2006, 71, 829. doi: 10.1021/jo051838d(24) Vougioukalakis, G. C.; Hatzimarinaki, M.; Lykakis, I. N.; Orfanopoulos, M. J. Org. Chem. 2006, 71, 829. doi: 10.1021/jo051838d

    25. [25]

      (25) Chen, C. B. Synthesis, Isolation and Properties of Titanium- Based Novel Endohedral Fullerenes. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2011. [陈传宝. 含金属钛的新型内嵌富勒烯的合成, 分离及性质研 [D]. 合肥: 中国科技大学, 2011.](25) Chen, C. B. Synthesis, Isolation and Properties of Titanium- Based Novel Endohedral Fullerenes. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2011. [陈传宝. 含金属钛的新型内嵌富勒烯的合成, 分离及性质研 [D]. 合肥: 中国科技大学, 2011.]

    26. [26]

      (26) Jia, G. X.; Li, X. G.; Song, X.W.; Li, J. Q.; Chen, Y. Surf. Sci. 2013, 608, 122. doi: 10.1016/j.susc.2012.09.025(26) Jia, G. X.; Li, X. G.; Song, X.W.; Li, J. Q.; Chen, Y. Surf. Sci. 2013, 608, 122. doi: 10.1016/j.susc.2012.09.025

    27. [27]

      (27) Branz, W.; Billas, I. M. L.; Malinowski, N.; Tast, F.; Heinebrodt, M.; Martin, T. P. J. Chem. Phys. 1998, 109, 3425. doi: 10.1063/1.477410(27) Branz, W.; Billas, I. M. L.; Malinowski, N.; Tast, F.; Heinebrodt, M.; Martin, T. P. J. Chem. Phys. 1998, 109, 3425. doi: 10.1063/1.477410

    28. [28]

      (28) Jia, G. X. Electronic Structures of Carbon Nanotubes and Fullerenes and Chemical Anisotropies: A Density Functional Theory Study. Ph. D. Dissertation, Fuzhou University, Fuzhou, 2007. [贾桂霄. 碳纳米管和富勒烯的电子结构及其化学各向异性的理论研究[D]. 福州: 福州大学, 2007.](28) Jia, G. X. Electronic Structures of Carbon Nanotubes and Fullerenes and Chemical Anisotropies: A Density Functional Theory Study. Ph. D. Dissertation, Fuzhou University, Fuzhou, 2007. [贾桂霄. 碳纳米管和富勒烯的电子结构及其化学各向异性的理论研究[D]. 福州: 福州大学, 2007.]

    29. [29]

      (29) Axel, D. B. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913(29) Axel, D. B. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    30. [30]

      (30) Lu, X.; Chen, Z. F.; Thiel, W.; Schleyer, P. v. R.; Huang, R. B.; Zheng, L. S. J. Am. Chem. Soc. 2004, 126, 14871. doi: 10.1021/ja046725a(30) Lu, X.; Chen, Z. F.; Thiel, W.; Schleyer, P. v. R.; Huang, R. B.; Zheng, L. S. J. Am. Chem. Soc. 2004, 126, 14871. doi: 10.1021/ja046725a

    31. [31]

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.

  • 加载中
计量
  • PDF下载量:  232
  • 文章访问数:  787
  • HTML全文浏览量:  57
文章相关
  • 发布日期:  2015-05-08
  • 收稿日期:  2014-11-24
  • 网络出版日期:  2015-03-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章