
Citation: PAN Wen-Ya, HUANG Liang, QIN Feng, ZHUANG Yan, LI Xue-Mei, MA Jian-Xue, SHEN Wei, XU Hua-Long. Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 965-972. doi: 10.3866/PKU.WHXB201503024

甘油脱水合成丙烯醛ZSM-5催化剂的孔结构和酸性调控
研究了ZSM-5 孔结构和表面酸性对甘油脱水合成丙烯醛反应性能的影响. 在碱浓度为0.2 mol·L-1的NaOH溶液中, 分别在65和85 ℃条件下对ZSM-5进行化学刻蚀, 成功地制备了含微介孔的ZSM-5催化剂, 提高了催化剂的表面强酸密度. 碱处理后的ZSM-5催化剂在甘油脱水反应中的稳定性得到显著提高, 在ZSM-5-at85 (经85 ℃碱处理的ZSM-5)催化剂上甘油转化率在反应10 h 后仍可保持95%以上, 丙烯醛选择性达到78%. 采用N2吸附-脱附等温线、X射线粉末衍射(XRD)、27Al 固体核磁共振(27Al MAS-NMR)和透射电子显微镜(TEM)等手段对ZSM-5 结构和表面性质进行了表征, 实验结果表明在碱处理过程中骨架中的硅发生了溶脱现象, 在分子筛表面上形成了大量介孔, 但是ZSM-5 的MFI 拓扑结构没有发生变化, 骨架中的大部分铝得到保持. X射线光电子能谱(XPS)、X射线荧光光谱(XRF)和氨气程序升温脱附(NH3-TPD)证实了在碱处理后ZSM-5分子筛外表面的Si/Al 摩尔比低于其骨架中的比例, 由此表明脱硅现象主要发生在ZSM-5 的外表面, 在新产生的介孔区域由于Si/Al 摩尔比的降低使得强酸密度得到提高. 具有微介孔结构和较高酸密度的ZSM-5催化剂增强了反应物扩散性能和容碳能力, 这对于提高甘油脱水合成丙烯醛催化剂的活性和稳定性起到了关键作用.
English
Regulation of Pore Structure and Acidity of a ZSM-5 Catalyst for Dehydration of Glycerol to Acrolein
Pore structure and acidity of ZSM-5 catalysts were successfully regulated by alkali treatment. ZSM- 5 was etched in 0.2 mol·L- 1 NaOH solution at 65 and 85 ℃. Micro-mesoporous ZSM-5 catalysts were successfully prepared with a high density of acidic sites. The activity and stability were significantly enhanced with alkali-treated ZSM-5, giving a conversion of glycerol above 95%, with selectivity for acrolein of 78% after 10 h compared with a ZSM-5-at85 (alkali-treated at 85 ℃) catalyst. Characterization of N2 adsorption and desorption isotherms, X-ray diffraction (XRD), 27Al mass atomic spectroscopy-nuclear magnetic resonance (27Al MAS-NMR), and transmission electron microscopy (TEM) were performed to interpret the morphology and surface properties. The results reveal that the Si in the framework of ZSM-5 was leached out by alkali treatment, and many mesopores were formed on the ZSM-5 surface. However, the MFI topology did not change and Al was mainly integrated within the framework. X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), and NH3-temperature-programed desorption (NH3-TPD) experiments demonstrated that the molar ratio of Si/ Al on the external surface was lower than that in the framework, indicating that more Si on the external surface of ZSM-5 was leached by alkali treatment, while the acidic density increased because of the lower molar ratio of Si/Al near newly formed mesopores. ZSM-5 catalysts with mesopores and higher acidic density enhance reactant diffusion and coking tolerance, which improves the activity and stability during glycerol dehydration.
-
Key words:
-
Micro-mesoporous ZSM-5
- / Surface acidity
- / Alkali treatment
- / Dehydration of glycerol
- / Acrolein
-
-
[1]
(1) Lourenço, J. P.; Macedo, M. I.; Fernandes, A. Catal. Commun. 2012, 19, 105. doi: 10.1016/j.catcom.2011.12.029
(1) Lourenço, J. P.; Macedo, M. I.; Fernandes, A. Catal. Commun. 2012, 19, 105. doi: 10.1016/j.catcom.2011.12.029
-
[2]
(2) Benjamin, K.; Bastien, P.; Franck, D. ACS Catal. 2013, 3, 1819. doi: 10.1021/cs400354p(2) Benjamin, K.; Bastien, P.; Franck, D. ACS Catal. 2013, 3, 1819. doi: 10.1021/cs400354p
-
[3]
(3) Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13. doi: 10.1039/B710561D(3) Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13. doi: 10.1039/B710561D
-
[4]
(4) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C. D. Angew. Chem. Int. Edit. 2007, 46, 4434.(4) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C. D. Angew. Chem. Int. Edit. 2007, 46, 4434.
-
[5]
(5) Jo, B. Y.; Kim, E. J.; Moon, S. H. Appl. Catal. A: Gen. 2007, 332, 257. doi: 10.1016/j.apcata.2007.08.025(5) Jo, B. Y.; Kim, E. J.; Moon, S. H. Appl. Catal. A: Gen. 2007, 332, 257. doi: 10.1016/j.apcata.2007.08.025
-
[6]
(6) Luiz, G. P.; Rosiane, N. D.; Teresita, G. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003(6) Luiz, G. P.; Rosiane, N. D.; Teresita, G. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003
-
[7]
(7) Kim, Y. T.; Jung, K. D.; Park, E. D. Microporous Mesoporous Mat. 2010, 131, 28. doi: 10.1016/j.micromeso.2009.11.037(7) Kim, Y. T.; Jung, K. D.; Park, E. D. Microporous Mesoporous Mat. 2010, 131, 28. doi: 10.1016/j.micromeso.2009.11.037
-
[8]
(8) Jia, C. J.; Liu, Y.; Schmidt, W.; Lu, A. H.; Schüth, F. J. Catal. 2010, 269, 71. doi: 10.1016/j.jcat.2009.10.017(8) Jia, C. J.; Liu, Y.; Schmidt, W.; Lu, A. H.; Schüth, F. J. Catal. 2010, 269, 71. doi: 10.1016/j.jcat.2009.10.017
-
[9]
(9) Kim, Y. T.; Jung, K. D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 275. doi: 10.1016/j.apcata.2010.12.007(9) Kim, Y. T.; Jung, K. D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 275. doi: 10.1016/j.apcata.2010.12.007
-
[10]
(10) Gu, Y. L.; Cui, N. Y.; Yu, Q. J. Appl. Catal. A: Gen. 2012, 429, 9.(10) Gu, Y. L.; Cui, N. Y.; Yu, Q. J. Appl. Catal. A: Gen. 2012, 429, 9.
-
[11]
(11) Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Catal. Commun. 2007, 8, 1349. doi: 10.1016/j.catcom.2006.12.006(11) Tsukuda, E.; Sato, S.; Takahashi, R.; Sodesawa, T. Catal. Commun. 2007, 8, 1349. doi: 10.1016/j.catcom.2006.12.006
-
[12]
(12) Katryniok, B.; Paul, S.; Capron, M.; Lancelot, C.; Belliere- Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 1922. doi: 10.1039/c0gc00254b(12) Katryniok, B.; Paul, S.; Capron, M.; Lancelot, C.; Belliere- Baca, V.; Rey, P.; Dumeignil, F. Green Chem. 2010, 12, 1922. doi: 10.1039/c0gc00254b
-
[13]
(13) Ning, L. L.; Ding, Y. J.; Chen, W. M.; ng, L. F.; Lin, R. H.; Lü, Y.; Xin, Q. Chin. J. Catal. 2008, 29, 212. [宁丽丽, 丁云杰, 陈维苗, 龚磊峰, 林荣和, 吕元, 辛勤. 催化学报, 2008, 29, 212.] doi: 10.1016/S1872-2067(08)60026-1(13) Ning, L. L.; Ding, Y. J.; Chen, W. M.; ng, L. F.; Lin, R. H.; Lü, Y.; Xin, Q. Chin. J. Catal. 2008, 29, 212. [宁丽丽, 丁云杰, 陈维苗, 龚磊峰, 林荣和, 吕元, 辛勤. 催化学报, 2008, 29, 212.] doi: 10.1016/S1872-2067(08)60026-1
-
[14]
(14) Lauriol-Garbey, P.; Loridant, S. Catal. Commun. 2011, 16, 170. doi: 10.1016/j.catcom.2011.09.026(14) Lauriol-Garbey, P.; Loridant, S. Catal. Commun. 2011, 16, 170. doi: 10.1016/j.catcom.2011.09.026
-
[15]
(15) Stoši?, D.; Bennici, S. Catal. Commun. 2012, 17, 23. doi: 10.1016/j.catcom.2011.10.004(15) Stoši?, D.; Bennici, S. Catal. Commun. 2012, 17, 23. doi: 10.1016/j.catcom.2011.10.004
-
[16]
(16) Liu, Q. B.; Zhang, Z.; Du, Y.; Li, J. Catal. Lett. 2009, 127, 419. doi: 10.1007/s10562-008-9723-y(16) Liu, Q. B.; Zhang, Z.; Du, Y.; Li, J. Catal. Lett. 2009, 127, 419. doi: 10.1007/s10562-008-9723-y
-
[17]
(17) Suprun, W.; Lutecki, M.; Haber, T.; Papp, H. J. Mol. Catal. A: Chem. 2009, 309, 71. doi: 10.1016/j.molcata.2009.04.017(17) Suprun, W.; Lutecki, M.; Haber, T.; Papp, H. J. Mol. Catal. A: Chem. 2009, 309, 71. doi: 10.1016/j.molcata.2009.04.017
-
[18]
(18) Okuno, M.; Matsunami, E.; Takahashi, T.; Kasuga, H. Catalysts for Gas-Phase Spin-Dehydration in Manufacture of Glycerin, Acrolein and Its Derivative, Contains Preset Amount of Binder and Crystalline Metallosilicate Containing Preset Ratio of Silicon and Specific Atom. Japanese Patent, JP2007301505-A, 22 Nov 2007.(18) Okuno, M.; Matsunami, E.; Takahashi, T.; Kasuga, H. Catalysts for Gas-Phase Spin-Dehydration in Manufacture of Glycerin, Acrolein and Its Derivative, Contains Preset Amount of Binder and Crystalline Metallosilicate Containing Preset Ratio of Silicon and Specific Atom. Japanese Patent, JP2007301505-A, 22 Nov 2007.
-
[19]
(19) Dubois, J. L.; Duquenne, C.; Hoelderich, W. Manufacturing Acrolein, Useful as Intermediate for Synthesis of Methionine and Acrylic Acid, by Dehydration of Glycerol in the Presence of Molecular Oxygen at Outside the Flammability Range. WO2006087083-A2, 24 Aug 2006.(19) Dubois, J. L.; Duquenne, C.; Hoelderich, W. Manufacturing Acrolein, Useful as Intermediate for Synthesis of Methionine and Acrylic Acid, by Dehydration of Glycerol in the Presence of Molecular Oxygen at Outside the Flammability Range. WO2006087083-A2, 24 Aug 2006.
-
[20]
(20) Kim, Y. T.; Jung, K. D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 5.(20) Kim, Y. T.; Jung, K. D.; Park, E. D. Appl. Catal. A: Gen. 2011, 393, 5.
-
[21]
(21) Chal, R.; Gerardin, C.; Bulut, M.; Donk, S. ChemCatChem 2011, 3, 67. doi: 10.1002/cctc.201000158(21) Chal, R.; Gerardin, C.; Bulut, M.; Donk, S. ChemCatChem 2011, 3, 67. doi: 10.1002/cctc.201000158
-
[22]
(22) Massa, M.; Andersson, A.; Finocchio, E.; Busca, G.; Lenrick, F.; Wallenberg, L. R. J. Catal. 2013, 297, 93. doi: 10.1016/j.jcat.2012.09.021(22) Massa, M.; Andersson, A.; Finocchio, E.; Busca, G.; Lenrick, F.; Wallenberg, L. R. J. Catal. 2013, 297, 93. doi: 10.1016/j.jcat.2012.09.021
-
[23]
(23) Zhao, H.; Zhou, C. H.; Wu, L. M.; Lou, J. Y.; Li, N.; Yang, H. M.; Tong, D. S.; Yu, W. H. Applied Clay Science 2013, 74, 154. doi: 10.1016/j.clay.2012.09.011(23) Zhao, H.; Zhou, C. H.; Wu, L. M.; Lou, J. Y.; Li, N.; Yang, H. M.; Tong, D. S.; Yu, W. H. Applied Clay Science 2013, 74, 154. doi: 10.1016/j.clay.2012.09.011
-
[24]
(24) Ogura, M.; Shinomiya, S. Y.; Tateno, J.; Nara, Y.; Kikuchi, E.; Matsukata, M. Chem. Lett. 2000, 29, 882.(24) Ogura, M.; Shinomiya, S. Y.; Tateno, J.; Nara, Y.; Kikuchi, E.; Matsukata, M. Chem. Lett. 2000, 29, 882.
-
[25]
(25) Ogura, M.; Shinomiya, S. Y.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M. Appl. Catal. A: Gen. 2001, 219, 33. doi: 10.1016/S0926-860X(01)00645-7(25) Ogura, M.; Shinomiya, S. Y.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M. Appl. Catal. A: Gen. 2001, 219, 33. doi: 10.1016/S0926-860X(01)00645-7
-
[26]
(26) Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Pérez-Ramírez, J. Chem. -Eur. J. 2005, 11, 4983.(26) Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Pérez-Ramírez, J. Chem. -Eur. J. 2005, 11, 4983.
-
[27]
(27) Groen, J. C.; Zhu, W. D.; Brouwer, S.; Huynink, S. J.; Kapteijn, F.; Moulijn, J. A.; Pérez-Ramírez, J. J. Am. Chem. Soc. 2007, 129, 355. doi: 10.1021/ja065737o(27) Groen, J. C.; Zhu, W. D.; Brouwer, S.; Huynink, S. J.; Kapteijn, F.; Moulijn, J. A.; Pérez-Ramírez, J. J. Am. Chem. Soc. 2007, 129, 355. doi: 10.1021/ja065737o
-
[28]
(28) Verboekend, D.; Pérez-Ramírez, J. Chem. -Eur. J. 2011, 17, 1137. doi: 10.1002/chem.v17.4(28) Verboekend, D.; Pérez-Ramírez, J. Chem. -Eur. J. 2011, 17, 1137. doi: 10.1002/chem.v17.4
-
[29]
(29) Ravishankar, R.; Kirschhock, C.; Schoeman, B. J.; Vanoppen, P.; Grobet, P. J.; Storck, S. J. Phys. Chem. B 1998, 102, 2633. doi: 10.1021/jp973147u(29) Ravishankar, R.; Kirschhock, C.; Schoeman, B. J.; Vanoppen, P.; Grobet, P. J.; Storck, S. J. Phys. Chem. B 1998, 102, 2633. doi: 10.1021/jp973147u
-
[30]
(30) Zeolites Characterization and Catalysis: A Tutorial; Chester, A. W., Derouane, E. G. Eds. Springer-Verlag New York Inc.: New York, 2009; pp 358-365.(30) Zeolites Characterization and Catalysis: A Tutorial; Chester, A. W., Derouane, E. G. Eds. Springer-Verlag New York Inc.: New York, 2009; pp 358-365.
-
[31]
(31) Kentgens, A. P.; Scholle, M. K.; Veeman, W. S. J. Chem. Phys. 1987, 87, 4357.(31) Kentgens, A. P.; Scholle, M. K.; Veeman, W. S. J. Chem. Phys. 1987, 87, 4357.
-
[32]
(32) Mei, C. S.; Wen, P. Y.; Liu, Z. C.; Liu, H. X.; Wang, Y. D.; Yang, W. M.; Xie, Z. K.; Hua, W. M.; Gao, Z. J. Catal. 2008, 258, 243. doi: 10.1016/j.jcat.2008.06.019(32) Mei, C. S.; Wen, P. Y.; Liu, Z. C.; Liu, H. X.; Wang, Y. D.; Yang, W. M.; Xie, Z. K.; Hua, W. M.; Gao, Z. J. Catal. 2008, 258, 243. doi: 10.1016/j.jcat.2008.06.019
-
[33]
(33) Lietz, G.; Schnabel, K. H.; Peuker, C.; Gross, T. J. Catal. 1994, 148, 562. doi: 10.1006/jcat.1994.1242(33) Lietz, G.; Schnabel, K. H.; Peuker, C.; Gross, T. J. Catal. 1994, 148, 562. doi: 10.1006/jcat.1994.1242
-
[34]
(34) Lutz, W.; Grossmann, A.; Bülow, M.; Gross, T. Cryst. Res. Tech. 1990, 25, 135.(34) Lutz, W.; Grossmann, A.; Bülow, M.; Gross, T. Cryst. Res. Tech. 1990, 25, 135.
-
[35]
(35) Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. Green Chem. 2007, 9, 1130.(35) Chai, S. H.; Wang, H. P.; Liang, Y.; Xu, B. Q. Green Chem. 2007, 9, 1130.
-
[36]
(36) Corma, A.; Huber, G.W.; Sauvanaud, L.; O′Connor, P. J. Catal. 2008, 257, 163. doi: 10.1016/j.jcat.2008.04.016(36) Corma, A.; Huber, G.W.; Sauvanaud, L.; O′Connor, P. J. Catal. 2008, 257, 163. doi: 10.1016/j.jcat.2008.04.016
-
[37]
(37) Arita, Y.; Kasuga, H.; Kirishiki, K. Regeneration of Catalyst Used for Glycerin-Spin Dehydration for Manufacturing Glycerin Derivative, Involves Contacting Oxidizing Agent with Carbon-like Substance in Surface of Catalyst, and Removing Carbon-Like Substance. Japanese Patent, JP2008110298-A, 15 May 2008.(37) Arita, Y.; Kasuga, H.; Kirishiki, K. Regeneration of Catalyst Used for Glycerin-Spin Dehydration for Manufacturing Glycerin Derivative, Involves Contacting Oxidizing Agent with Carbon-like Substance in Surface of Catalyst, and Removing Carbon-Like Substance. Japanese Patent, JP2008110298-A, 15 May 2008.
-
[38]
(38) Possato, L. G.; Diniz, R. N.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003(38) Possato, L. G.; Diniz, R. N.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003
-
[39]
(38) Possato, L. G.; Diniz, R. N.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003
(38) Possato, L. G.; Diniz, R. N.; Garetto, T.; Pulcinelli, S. H.; Santilli, C. V.; Martins, L. J. Catal. 2013, 300, 102. doi: 10.1016/j.jcat.2013.01.003
-
[1]
-

计量
- PDF下载量: 316
- 文章访问数: 707
- HTML全文浏览量: 20