跨接VTSRK方程计算烃类的pVT性质

申爱景 段远源 杨震

引用本文: 申爱景, 段远源, 杨震. 跨接VTSRK方程计算烃类的pVT性质[J]. 物理化学学报, 2014, 30(8): 1426-1431. doi: 10.3866/PKU.WHXB201405231 shu
Citation:  SHEN Ai-Jing, DUAN Yuan-Yuan, YANG Zhen. pVT Properties of Alkanes Using Crossover VTSRK Equation of State[J]. Acta Physico-Chimica Sinica, 2014, 30(8): 1426-1431. doi: 10.3866/PKU.WHXB201405231 shu

跨接VTSRK方程计算烃类的pVT性质

  • 基金项目:

    国家自然科学基金(51236004)资助项目 

摘要:

烃类pVT性质的精细表征对能源动力、化工等领域应用有重要价值,临界区热力性质描述是难点之一.本文建立了烷烃(C1-C20)的跨接比容平移Soave-Redlich-Kwong(SRK)(跨接VTSRK)状态方程,在SRK状态方程的基础上引入了比容平移和跨接方法,以改善饱和液相密度和近临界区域热力学性质的计算精度,方程参数被表达为物质临界参数和偏心因子的函数. 比较结果表明,跨接方程对烷烃(C1-C20)饱和蒸气压、饱和气相密度、饱和液相密度的计算平均偏差分别为1.01%、1.83%和0.93%,显著优于原方程,单相区和近临界区的pVT性质计算精度也比原状态方程有较大改善. 进一步将方程推广到环烷烃(环丙烷、环戊烷和环己烷)和苯、甲苯的计算,也获得了较好效果,验证了方程的预测能力.

English

    1. [1]

      (1) Meng, X. Z.; Jia, M.;Wang, T. Y. Fuel 2013, 111, 216. doi: 10.1016/j.fuel.2013.04.050

      (1) Meng, X. Z.; Jia, M.;Wang, T. Y. Fuel 2013, 111, 216. doi: 10.1016/j.fuel.2013.04.050

    2. [2]

      (2) Sisti, J.; DesJardin, P. E. Combust. Theor. Model. 2013, 17 (4), 657. doi: 10.1080/13647830.2013.791725(2) Sisti, J.; DesJardin, P. E. Combust. Theor. Model. 2013, 17 (4), 657. doi: 10.1080/13647830.2013.791725

    3. [3]

      (3) Li, L. Y.; Sun, F. F.; Chen, Z. T.; Cai, J. Acta Phys. -Chim. Sin. 2013, 29 (11), 2332. [李丽妍, 孙方方, 陈志同, 蔡钧. 物理化学学报, 2013, 29 (11), 2332.] doi: 10.3866/PKU.WHXB201307311(3) Li, L. Y.; Sun, F. F.; Chen, Z. T.; Cai, J. Acta Phys. -Chim. Sin. 2013, 29 (11), 2332. [李丽妍, 孙方方, 陈志同, 蔡钧. 物理化学学报, 2013, 29 (11), 2332.] doi: 10.3866/PKU.WHXB201307311

    4. [4]

      (4) Singla, G.; Scouflaire, P.; Rolon, C.; Candel, S. P. Combust. Inst. 2005, 30, 2921. doi: 10.1016/j.proci.2004.08.063(4) Singla, G.; Scouflaire, P.; Rolon, C.; Candel, S. P. Combust. Inst. 2005, 30, 2921. doi: 10.1016/j.proci.2004.08.063

    5. [5]

      (5) Soave, G. Chem. Eng. Sci. 1972, 27 (6), 1197. doi: 10.1016/0009-2509(72)80096-4(5) Soave, G. Chem. Eng. Sci. 1972, 27 (6), 1197. doi: 10.1016/0009-2509(72)80096-4

    6. [6]

      (6) Peng, D.; Robinson, D. B. Ind. Eng. Chem. Fundamen. 1976, 15 (1), 59. doi: 10.1021/i160057a011(6) Peng, D.; Robinson, D. B. Ind. Eng. Chem. Fundamen. 1976, 15 (1), 59. doi: 10.1021/i160057a011

    7. [7]

      (7) Buecker, D.;Wagner,W. J. Phys. Chem. Ref. Data 2006, 35 (2), 929. doi: 10.1063/1.1901687(7) Buecker, D.;Wagner,W. J. Phys. Chem. Ref. Data 2006, 35 (2), 929. doi: 10.1063/1.1901687

    8. [8]

      (8) Martin, J. J. Ind. Eng. Chem. 1967, 59 (12), 34. doi: 10.1021/ie50696a008(8) Martin, J. J. Ind. Eng. Chem. 1967, 59 (12), 34. doi: 10.1021/ie50696a008

    9. [9]

      (9) Peneloux, A.; Rauzy, E.; Freze, R. Fluid Phase Equilib. 1982, 8 (1), 7. doi: 10.1016/0378-3812(82)80002-2(9) Peneloux, A.; Rauzy, E.; Freze, R. Fluid Phase Equilib. 1982, 8 (1), 7. doi: 10.1016/0378-3812(82)80002-2

    10. [10]

      (10) Lin, H.; Duan, Y. Y. Fluid Phase Equilib. 2005, 233 (2), 194. doi: 10.1016/j.fluid.2005.05.008(10) Lin, H.; Duan, Y. Y. Fluid Phase Equilib. 2005, 233 (2), 194. doi: 10.1016/j.fluid.2005.05.008

    11. [11]

      (11) Lin, H.; Duan, Y. Y.; Zhang, T.; Huang, Z. M. Ind. Eng. Chem. Res. 2006, 45 (5), 1829. doi: 10.1021/ie051058v(11) Lin, H.; Duan, Y. Y.; Zhang, T.; Huang, Z. M. Ind. Eng. Chem. Res. 2006, 45 (5), 1829. doi: 10.1021/ie051058v

    12. [12]

      (12) Ji,W. R.; Lempe, D. A. Fluid Phase Equilib. 1997, 130 (1-2), 49. doi: 10.1016/S0378-3812(96)03190-1(12) Ji,W. R.; Lempe, D. A. Fluid Phase Equilib. 1997, 130 (1-2), 49. doi: 10.1016/S0378-3812(96)03190-1

    13. [13]

      (13) Pfohl, O. Fluid Phase Equilib. 1999, 163 (1), 157. doi: 10.1016/S0378-3812(99)00199-5(13) Pfohl, O. Fluid Phase Equilib. 1999, 163 (1), 157. doi: 10.1016/S0378-3812(99)00199-5

    14. [14]

      (14) Yelash, L. V.; Kraska, T. AIChE J. 2003, 49 (6), 1569. doi: 10.1002/aic.690490620(14) Yelash, L. V.; Kraska, T. AIChE J. 2003, 49 (6), 1569. doi: 10.1002/aic.690490620

    15. [15]

      (15) Chapela, G. A.; Rowlinso, J. S. J. Chem. Soc . Faraday Trans I 1974, 70, 584.(15) Chapela, G. A.; Rowlinso, J. S. J. Chem. Soc . Faraday Trans I 1974, 70, 584.

    16. [16]

      (16) Fox, J. R. Fluid Phase Equilib. 1983, 14, 45.(16) Fox, J. R. Fluid Phase Equilib. 1983, 14, 45.

    17. [17]

      (17) Salvino, L.W.; White, J. A. J. Chem. Phys. 1992, 96 (6), 4559. doi: 10.1063/1.462791(17) Salvino, L.W.; White, J. A. J. Chem. Phys. 1992, 96 (6), 4559. doi: 10.1063/1.462791

    18. [18]

      (18) Kiselev, S. B. Fluid Phase Equilib. 1998, 147 (1-2), 7. doi: 10.1016/S0378-3812(98)00222-2(18) Kiselev, S. B. Fluid Phase Equilib. 1998, 147 (1-2), 7. doi: 10.1016/S0378-3812(98)00222-2

    19. [19]

      (19) Kiselev, S. B.; Ely, J. F. Fluid Phase Equilib. 2004, 222, 149.(19) Kiselev, S. B.; Ely, J. F. Fluid Phase Equilib. 2004, 222, 149.

    20. [20]

      (20) Kiselev, S. B.; Ely, J. F. Fluid. Phase Equilib. 2007, 252 (1-2), 57. doi: 10.1016/j.fluid.2006.10.028(20) Kiselev, S. B.; Ely, J. F. Fluid. Phase Equilib. 2007, 252 (1-2), 57. doi: 10.1016/j.fluid.2006.10.028

    21. [21]

      (21) Kiselev, S. B.; Ely, J. F. Ind. Eng. Chem. Res. 1999, 38 (12), 4993. doi: 10.1021/ie990387i(21) Kiselev, S. B.; Ely, J. F. Ind. Eng. Chem. Res. 1999, 38 (12), 4993. doi: 10.1021/ie990387i

    22. [22]

      (22) Xu, X. H.; Duan, Y. Y.; Yang, Z. Ind. Eng. Chem. Res. 2012, 51 (18), 6580. doi: 10.1021/ie300112j(22) Xu, X. H.; Duan, Y. Y.; Yang, Z. Ind. Eng. Chem. Res. 2012, 51 (18), 6580. doi: 10.1021/ie300112j

    23. [23]

      (23) Sengers, J. V.; Shanks, J. G. J. Stat. Phys. 2009, 137 (5-6), 857. doi: 10.1007/s10955-009-9840-z(23) Sengers, J. V.; Shanks, J. G. J. Stat. Phys. 2009, 137 (5-6), 857. doi: 10.1007/s10955-009-9840-z

    24. [24]

      (24) Kiselev, S. B.; Ely, J. F. Chem. Eng. Sci. 2006, 61 (15), 5107. doi: 10.1016/j.ces.2006.03.044(24) Kiselev, S. B.; Ely, J. F. Chem. Eng. Sci. 2006, 61 (15), 5107. doi: 10.1016/j.ces.2006.03.044

    25. [25]

      (25) Hu, Z. Q.; Yang, J. C.; Li, Y. G. Fluid Phase Equilib. 2003, 205 (1), 25. doi: 10.1016/S0378-3812(02)00307-2(25) Hu, Z. Q.; Yang, J. C.; Li, Y. G. Fluid Phase Equilib. 2003, 205 (1), 25. doi: 10.1016/S0378-3812(02)00307-2

    26. [26]

      (26) Kiselev, S. B.; Ely, J. F. J. Phys. Chem. C 2007, 111 (43), 15969. doi: 10.1021/jp073706p(26) Kiselev, S. B.; Ely, J. F. J. Phys. Chem. C 2007, 111 (43), 15969. doi: 10.1021/jp073706p

    27. [27]

      (27) Lemmon, E.W.; Huber, M. L.; McLinden, M. O. NIST Standard Reference Database 23 : Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 9.0; Gaithersburg: National Institute of Standards and Technology, 2010.(27) Lemmon, E.W.; Huber, M. L.; McLinden, M. O. NIST Standard Reference Database 23 : Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 9.0; Gaithersburg: National Institute of Standards and Technology, 2010.

    28. [28]

      (28) DIPPR Thermophysical Properties Laboratory 350CB, DIPPR Project 801 Evaluated Process Design Data; Brigham Young University: Provo, UT 84602, 2010.

      (28) DIPPR Thermophysical Properties Laboratory 350CB, DIPPR Project 801 Evaluated Process Design Data; Brigham Young University: Provo, UT 84602, 2010.

  • 加载中
计量
  • PDF下载量:  454
  • 文章访问数:  857
  • HTML全文浏览量:  36
文章相关
  • 发布日期:  2014-07-18
  • 收稿日期:  2014-03-24
  • 网络出版日期:  2014-05-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章