N2O+经由B2ПiX2П跃迁的光解离机理研究

吴丹 张立敏 周丹娜

引用本文: 吴丹, 张立敏, 周丹娜. N2O+经由B2ПiX2П跃迁的光解离机理研究[J]. 物理化学学报, 2014, 30(8): 1575-1580. doi: 10.3866/PKU.WHXB201405202 shu
Citation:  WU Dan, ZHANG Li-Min, ZHOU Dan-Na. Study on the Photodissociation Mechanism of N2O+ via B2ПiX2П Transitions[J]. Acta Physico-Chimica Sinica, 2014, 30(8): 1575-1580. doi: 10.3866/PKU.WHXB201405202 shu

N2O+经由B2ПiX2П跃迁的光解离机理研究

  • 基金项目:

    国家自然科学基金(21073177)资助项目 

摘要:

在超声分子束条件下,利用360.50 nm的电离激光使N2O分子经由[3+1]共振增强多光子电离(REMPI)产生纯净的N2O+X2Π(000))分子离子,用另一束解离激光在230-275 nm范围扫描获得N2O+经由B2ПiX2Π跃迁产生的光解碎片(NO+和N2+)激发(PHOFEX)谱. 获得的光解碎片激发谱可以归属为B2Пi(00n)←X2Π(000)序列跃迁. 我们分别将线性三原子分子离子N2O+中N―N伸缩振动简化成NO和N之间的简谐振动,N―O伸缩振动简化成N2和O之间的简谐振动,用谐振子的简谐势能曲线和波函数对N2O+分子离子X2ΠB2Пi电子态振动能级间跃迁的Franck-Condon因子进行计算,和实验得到的碎片离子增强谱实验强度进行比较,对前人给出的分子数据(分子平衡核间距)进行验证,讨论了N2O+经由B2Пi(00n)←X2Π(000)电子态跃迁的光解离机理和碎片离子的分支比.

English

    1. [1]

      (1) Wayne, R. P. Chemistry of Atmospheres; Clarendon: Oxford, 1991.

      (1) Wayne, R. P. Chemistry of Atmospheres; Clarendon: Oxford, 1991.

    2. [2]

      (2) Climate Change 1994; Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios ; Houghton, J. T., Filho, L. G. M., Harris, N. B. Eds; Cambridge University Press: Cambridge, 1995.(2) Climate Change 1994; Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios ; Houghton, J. T., Filho, L. G. M., Harris, N. B. Eds; Cambridge University Press: Cambridge, 1995.

    3. [3]

      (3) Zhen, C.; Hu, Y. H.; Liu, S. L.; Zhou, X. G. Chin. J. Chem. Phys. 2010, 26, 94. [甄承, 胡亚华, 刘世林, 周晓国. 化学物理学报, 2010, 26, 94.](3) Zhen, C.; Hu, Y. H.; Liu, S. L.; Zhou, X. G. Chin. J. Chem. Phys. 2010, 26, 94. [甄承, 胡亚华, 刘世林, 周晓国. 化学物理学报, 2010, 26, 94.]

    4. [4]

      (4) Cossart-Ma s, C. J. Chem. Phys. 2001, 114, 7368. doi: 10.1063/1.1363671(4) Cossart-Ma s, C. J. Chem. Phys. 2001, 114, 7368. doi: 10.1063/1.1363671

    5. [5]

      (5) Danis, P. O.;Wyttenbach, T.; Maier, J. P. J. Chem. Phys. 1988, 88, 3451. doi: 10.1063/1.453893(5) Danis, P. O.;Wyttenbach, T.; Maier, J. P. J. Chem. Phys. 1988, 88, 3451. doi: 10.1063/1.453893

    6. [6]

      (6) Szarka, M. G.;Wallace, S. C. J. Chem. Phys. 1991, 95, 2336. doi: 10.1063/1.460940(6) Szarka, M. G.;Wallace, S. C. J. Chem. Phys. 1991, 95, 2336. doi: 10.1063/1.460940

    7. [7]

      (7) Scheper, C. R.; Kuijt, J.; Buma,W. J.; DeLange, C. A. J. Chem. Phys. 1998, 109, 7844. doi: 10.1063/1.477431(7) Scheper, C. R.; Kuijt, J.; Buma,W. J.; DeLange, C. A. J. Chem. Phys. 1998, 109, 7844. doi: 10.1063/1.477431

    8. [8]

      (8) Patsilinakou, E.;Wiedmann, R. T.; Fotakis, C.; Grant, E. R. J. Chem. Phys. 1989, 91, 3916. doi: 10.1063/1.456823(8) Patsilinakou, E.;Wiedmann, R. T.; Fotakis, C.; Grant, E. R. J. Chem. Phys. 1989, 91, 3916. doi: 10.1063/1.456823

    9. [9]

      (9) Dehmer, P. M.; Dehmer, J. L. J. Chem. Phys. 1980, 73, 126. doi: 10.1063/1.439906(9) Dehmer, P. M.; Dehmer, J. L. J. Chem. Phys. 1980, 73, 126. doi: 10.1063/1.439906

    10. [10]

      (10) Cvitas, T.; Klasinc, L.; Kovac, B. J. Chem. Phys. 1983, 79, 1567.(10) Cvitas, T.; Klasinc, L.; Kovac, B. J. Chem. Phys. 1983, 79, 1567.

    11. [11]

      (11) Orth, R. G.; Dunbar, R. C. J. Chem. Phys. 1977, 66, 1619.(11) Orth, R. G.; Dunbar, R. C. J. Chem. Phys. 1977, 66, 1619.

    12. [12]

      (12) Alagia, M.; Candori, P.; Falcinelli, S.; Lavollée, M.; Pirani, F.; Richter, R.; Strangers, S., Vecchiocattivi, F. Chemical Physics Letters 2006, 432, 398. doi: 10.1016/j.cplett.2006.10.100(12) Alagia, M.; Candori, P.; Falcinelli, S.; Lavollée, M.; Pirani, F.; Richter, R.; Strangers, S., Vecchiocattivi, F. Chemical Physics Letters 2006, 432, 398. doi: 10.1016/j.cplett.2006.10.100

    13. [13]

      (13) Nenner, I.; Guyon, P.; Baer, T.; vers, T. R. J. Chem. Phys. 1980, 72, 6587. doi: 10.1063/1.439115(13) Nenner, I.; Guyon, P.; Baer, T.; vers, T. R. J. Chem. Phys. 1980, 72, 6587. doi: 10.1063/1.439115

    14. [14]

      (14) Chen,W.; Liu, J. J. Phys. Chem. A 2003, 107, 8086. doi: 10.1021/jp022389d(14) Chen,W.; Liu, J. J. Phys. Chem. A 2003, 107, 8086. doi: 10.1021/jp022389d

    15. [15]

      (15) Koppel, H.; Cederbaum, L. S.; Domcke,W. Chemical Physics1982, 69, 175. doi: 10.1016/0301-0104(82)88144-5(15) Koppel, H.; Cederbaum, L. S.; Domcke,W. Chemical Physics1982, 69, 175. doi: 10.1016/0301-0104(82)88144-5

    16. [16]

      (16) Danis, P. O.;Wyttenbach, T.; Maier, J. P. J. Chem. Phys. 1988, 88, 3453.(16) Danis, P. O.;Wyttenbach, T.; Maier, J. P. J. Chem. Phys. 1988, 88, 3453.

    17. [17]

      (17) Zhang, L. M.; Chen, J.; Xu, H. F.; Dai, J. H.; Liu, S. L.; Ma, X. X. J. Chem. Phys. 2001, 114, 1078.(17) Zhang, L. M.; Chen, J.; Xu, H. F.; Dai, J. H.; Liu, S. L.; Ma, X. X. J. Chem. Phys. 2001, 114, 1078.

    18. [18]

      (18) Zhang, L. M.;Wang, F.;Wang, Z.; Yu, S. Q.; Liu, S. L.; Ma, X. X. J. Phys. Chem. A 2004, 108, 1342. doi: 10.1021/jp036820q(18) Zhang, L. M.;Wang, F.;Wang, Z.; Yu, S. Q.; Liu, S. L.; Ma, X. X. J. Phys. Chem. A 2004, 108, 1342. doi: 10.1021/jp036820q

    19. [19]

      (19) Zhuang, X. J.; Zhang, L. M.;Wang, J. T.; Ma, Y. C.;Wang, Z.; Yu, S. Q. Chin. J. Chem. Phys. 2005, 18, 657.(19) Zhuang, X. J.; Zhang, L. M.;Wang, J. T.; Ma, Y. C.;Wang, Z.; Yu, S. Q. Chin. J. Chem. Phys. 2005, 18, 657.

    20. [20]

      (20) Zhuang, X. J.; Zhang, L. M.;Wang, J. T.; Ma, Y. C.; Yu, S. Q.; Liu, S. L.; Ma, X. X. J. Phys. Chem. A 2006, 110, 6256.(20) Zhuang, X. J.; Zhang, L. M.;Wang, J. T.; Ma, Y. C.; Yu, S. Q.; Liu, S. L.; Ma, X. X. J. Phys. Chem. A 2006, 110, 6256.

    21. [21]

      (21) Zhou, D. N.; Zhang, L. M.; Chen, L.;Wu, D. Acta Phys. -Chim. Sin. 2012, 28, 963. [周丹娜, 张立敏, 陈琳, 吴丹. 物理化学学报, 2012, 28, 963.] doi: 10.3866/PKU.WHXB201202162(21) Zhou, D. N.; Zhang, L. M.; Chen, L.;Wu, D. Acta Phys. -Chim. Sin. 2012, 28, 963. [周丹娜, 张立敏, 陈琳, 吴丹. 物理化学学报, 2012, 28, 963.] doi: 10.3866/PKU.WHXB201202162

    22. [22]

      (22) Zhou, D. N.; Zhang, L. M.; Chen, L.;Wu, D. Chin. J. Chem. Phys. 2013, 26, 265. [周丹娜, 张立敏, 陈琳, 吴丹. 化学物理学报, 2013, 26, 265.] doi: 10.1063/1674-0068/26/03/265-269(22) Zhou, D. N.; Zhang, L. M.; Chen, L.;Wu, D. Chin. J. Chem. Phys. 2013, 26, 265. [周丹娜, 张立敏, 陈琳, 吴丹. 化学物理学报, 2013, 26, 265.] doi: 10.1063/1674-0068/26/03/265-269

    23. [23]

      (23) Ma, Y. C.; Zhang, L. M.; Zhuang, X. J.;Wang, J. T.; Yang, M. P.; Yu, S. Q. Acta Phys. -Chim. Sin. 2006, 22, 1532. [马玉超, 张立敏, 庄秀娟, 王金婷, 杨茂萍, 俞书勤. 物理化学学报, 2006, 22, 1532.] doi: 10.1016/S1872-1508(06)60078-8(23) Ma, Y. C.; Zhang, L. M.; Zhuang, X. J.;Wang, J. T.; Yang, M. P.; Yu, S. Q. Acta Phys. -Chim. Sin. 2006, 22, 1532. [马玉超, 张立敏, 庄秀娟, 王金婷, 杨茂萍, 俞书勤. 物理化学学报, 2006, 22, 1532.] doi: 10.1016/S1872-1508(06)60078-8

    24. [24]

      (24) Jolma, K.; Kauppinen, J.; Horneman, V. M. J. Mol. Spectrosc. 1983, 101, 278. doi: 10.1016/0022-2852(83)90133-9(24) Jolma, K.; Kauppinen, J.; Horneman, V. M. J. Mol. Spectrosc. 1983, 101, 278. doi: 10.1016/0022-2852(83)90133-9

    25. [25]

      (25) Toth, R. A. Appl. Opt. 1991, 30, 5289. doi: 10.1364/AO.30.005289(25) Toth, R. A. Appl. Opt. 1991, 30, 5289. doi: 10.1364/AO.30.005289

    26. [26]

      (26) Chambaud, G.; Gritli, H.; Rosmus, P.;Werner, H. J.; Knowles, P. J. Molecular Physics 2000, 98, 1793.

      (26) Chambaud, G.; Gritli, H.; Rosmus, P.;Werner, H. J.; Knowles, P. J. Molecular Physics 2000, 98, 1793.

  • 加载中
计量
  • PDF下载量:  671
  • 文章访问数:  515
  • HTML全文浏览量:  5
文章相关
  • 发布日期:  2014-07-18
  • 收稿日期:  2014-04-15
  • 网络出版日期:  2014-05-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章