ZnO/eosin-Y混合薄膜的生长机理和形态

MARÍ Bernabé SINGH Krishan-Chander MOLLAR Miguel MOYA Mónica

引用本文: MARÍ Bernabé, SINGH Krishan-Chander, MOLLAR Miguel, MOYA Mónica. ZnO/eosin-Y混合薄膜的生长机理和形态[J]. 物理化学学报, 2012, 28(01): 251-256. doi: 10.3866/PKU.WHXB201228251 shu
Citation:  MARÍ Bernabé, SINGH Krishan-Chander, MOLLAR Miguel, MOYA Mónica. Growth Mechanism and Morphology of ZnO/eosin-Y Hybrid Thin Films[J]. Acta Physico-Chimica Sinica, 2012, 28(01): 251-256. doi: 10.3866/PKU.WHXB201228251 shu

ZnO/eosin-Y混合薄膜的生长机理和形态

  • 基金项目:

    The project was supported by the Spanish vernment through MCINN Grant (MAT2009-14625-C03-03) (MAT2009-14625-C03-03)

    MEC Financial Fund(SAB2010-0019) for Singh, K. C. (SAB2010-0019)

摘要: Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at -0.8 and -0.9 V inaqueous and non-aqueous baths at temperatures ranging from 40 to 90 °C with dye concentrations of 100and 400 μmol·L-1. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive X-ray analysis (EDX), and absorption spectroscopy. The films prepared in anon-aqueous bath were non-porous and did not adsorb dye molecules on their surface. However, the filmsgrown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO.Preferential growth of the film along the (002) face was observed, and the highest crystallinity wasachieved when the film was deposited at 60 °C. The maximum absorption was achieved for the films grownat 60 to 70 °C, a deposition potential of -0.9 V, and a dye concentration of 100 μmol·L-1.

English

    1. [1]

      (1) Bube, R. H. Photoconductivity of Solids;Wiley: New York, 1960.(1) Bube, R. H. Photoconductivity of Solids;Wiley: New York, 1960.

    2. [2]

      (2) Zink Oxide Bulk, Thin Films and Nanostructures; Jagadish, C., Pearton, S. Eds.; Elsevier: Amsterdam, 2006.(2) Zink Oxide Bulk, Thin Films and Nanostructures; Jagadish, C., Pearton, S. Eds.; Elsevier: Amsterdam, 2006.

    3. [3]

      (3) Gupta, T. K. J. Am. Ceram. Soc. 1990, 73, 1817.  (3) Gupta, T. K. J. Am. Ceram. Soc. 1990, 73, 1817.  

    4. [4]

      (4) Look, D. C. Mater. Sci. Eng. 2001, 80, 383.  (4) Look, D. C. Mater. Sci. Eng. 2001, 80, 383.  

    5. [5]

      (5) Yamamoto, T.; Shiosaki, T.; Kawabata, A. J. Appl. Phys. 1980, 51, 3113.  (5) Yamamoto, T.; Shiosaki, T.; Kawabata, A. J. Appl. Phys. 1980, 51, 3113.  

    6. [6]

      (6) Aeugle, T. H.; Bialas, K.; Heneka, H.; Pleyer,W. Thin Solid Films 1991, 201, 293.  (6) Aeugle, T. H.; Bialas, K.; Heneka, H.; Pleyer,W. Thin Solid Films 1991, 201, 293.  

    7. [7]

      (7) Chatterjee, A. P. ; Mitra, P.; Mukhopadhyay, A. K. J. Mater. Sci. 1999, 34, 4225.  (7) Chatterjee, A. P. ; Mitra, P.; Mukhopadhyay, A. K. J. Mater. Sci. 1999, 34, 4225.  

    8. [8]

      (8) Nicoll, F. H. Appl. Phys. Lett. 1996, 9, 13.(8) Nicoll, F. H. Appl. Phys. Lett. 1996, 9, 13.

    9. [9]

      (9) Bagnall, D. M.; Chen, Y. F.; to, T.; Koyama, S.; Shen, M. Y.; Yao, T.; Zhu, Z. Appl. Phys. Lett. 1997, 70, 2230.  (9) Bagnall, D. M.; Chen, Y. F.; to, T.; Koyama, S.; Shen, M. Y.; Yao, T.; Zhu, Z. Appl. Phys. Lett. 1997, 70, 2230.  

    10. [10]

      (10) Wiersma, D. Nature, 2000, 406, 132.  (10) Wiersma, D. Nature, 2000, 406, 132.  

    11. [11]

      (11) Nanto, H.; Minami, T.; Shooji, S.; Takata, S. J. Appl. Phys. 1984, 55, 1029.  (11) Nanto, H.; Minami, T.; Shooji, S.; Takata, S. J. Appl. Phys. 1984, 55, 1029.  

    12. [12]

      (12) Natsume, Y.; Sakata, H.; Hirayama, T.; Yanagida, H. J. Appl. Phys. 1992, 72, 4203.  (12) Natsume, Y.; Sakata, H.; Hirayama, T.; Yanagida, H. J. Appl. Phys. 1992, 72, 4203.  

    13. [13]

      (13) Okamura, T.; Seki, Y.; Nagakary, S.; Okushi, H. Jpn. J. Appl. Phys. 1992, 31, 762.  (13) Okamura, T.; Seki, Y.; Nagakary, S.; Okushi, H. Jpn. J. Appl. Phys. 1992, 31, 762.  

    14. [14]

      (14) Aranovich, J.; Ortiz, A.; Bube, R. H. J. Vac. Sci. Technol. 1979, 16, 994.  (14) Aranovich, J.; Ortiz, A.; Bube, R. H. J. Vac. Sci. Technol. 1979, 16, 994.  

    15. [15]

      (15) Izaki, M.; Omi, T. Appl. Phys. Lett. 1996, 68, 2439.  (15) Izaki, M.; Omi, T. Appl. Phys. Lett. 1996, 68, 2439.  

    16. [16]

      (16) Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann, T.; Sugiura, T.; Minoura, H. Advanced Materials 2000, 12, 1214.  (16) Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann, T.; Sugiura, T.; Minoura, H. Advanced Materials 2000, 12, 1214.  

    17. [17]

      (17) Lee,W. J.; Okada, H.;Wakahara, A.; Yoshida, A. Ceramics International 2006, 32, 495.  (17) Lee,W. J.; Okada, H.;Wakahara, A.; Yoshida, A. Ceramics International 2006, 32, 495.  

    18. [18]

      (18) Suri, P.; Mehra, R. M. Solar Energy Materials and Solar Cells 2007, 91, 518.  (18) Suri, P.; Mehra, R. M. Solar Energy Materials and Solar Cells 2007, 91, 518.  

    19. [19]

      (19) Suri, P.; M. Panwar, M.; Mehra, R. M. Materials Science-Poland 2007, 25, 137.(19) Suri, P.; M. Panwar, M.; Mehra, R. M. Materials Science-Poland 2007, 25, 137.

    20. [20]

      (20) Wu, J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213.(20) Wu, J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213.

    21. [21]

      (21) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H. Solar Energy Materials and Solar Cells 2000, 64, 115.  (21) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H. Solar Energy Materials and Solar Cells 2000, 64, 115.  

    22. [22]

      (22) Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H. Industrial & Engineering Chemistry Product Research and Development 1980, 19, 415.  (22) Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H. Industrial & Engineering Chemistry Product Research and Development 1980, 19, 415.  

    23. [23]

      (23) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  (23) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    24. [24]

      (24) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.(24) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    25. [25]

      (25) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc 1993, 115, 6382.  (25) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc 1993, 115, 6382.  

    26. [26]

      (26) Cembrero, J.; Elmanouni, A.; Hartiti, B.; Mollar, M.; Marí, B. Thin Solid Films 2004, 45, 198.(26) Cembrero, J.; Elmanouni, A.; Hartiti, B.; Mollar, M.; Marí, B. Thin Solid Films 2004, 45, 198.

    27. [27]

      (27) Graaf, H.; Maedler, C.; Kehr, M.; Oekermann, T. J. Phys. Chem. C 2009, 113, 6910.  (27) Graaf, H.; Maedler, C.; Kehr, M.; Oekermann, T. J. Phys. Chem. C 2009, 113, 6910.  

    28. [28]

      (28) Boeckler, C.; Oekermann, T.; Soruban, M.; Ichinose, K.; Yoshida, T. Phys. Stat. Sol. 2005, 205, 2388.(28) Boeckler, C.; Oekermann, T.; Soruban, M.; Ichinose, K.; Yoshida, T. Phys. Stat. Sol. 2005, 205, 2388.

    29. [29]

      (29) Gerischer, H.; Sorg, N.; Electrochim. Acta 1992, 37, 827.  (29) Gerischer, H.; Sorg, N.; Electrochim. Acta 1992, 37, 827.  

    30. [30]

      (30) Choi, J. H.; Jang, E. S.;Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y.W. Adv. Mater. 2003, 15, 1911.  (30) Choi, J. H.; Jang, E. S.;Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y.W. Adv. Mater. 2003, 15, 1911.  

    31. [31]

      (31) Yoshida, T.; Pauporte, T.; Lincot, D.; Oekermann, T.; Minoura, H. J. Electrochem. Soc. 2003, 150, C608.(31) Yoshida, T.; Pauporte, T.; Lincot, D.; Oekermann, T.; Minoura, H. J. Electrochem. Soc. 2003, 150, C608.

    32. [32]

      (32) Yoshida, T.; Tochimoto, M.; Schlettwein, D.;Wohrle, D.; Sugiura, T.; Minoura, H. Chem. Mater. 1999, 11, 2657.  (32) Yoshida, T.; Tochimoto, M.; Schlettwein, D.;Wohrle, D.; Sugiura, T.; Minoura, H. Chem. Mater. 1999, 11, 2657.  

    33. [33]

      (33) Gan, X.; Li, X.; Gao, X.; He, X.; Zhuge, F. Mater. Chem. Phys. 2009, 114, 920.  (33) Gan, X.; Li, X.; Gao, X.; He, X.; Zhuge, F. Mater. Chem. Phys. 2009, 114, 920.  

    34. [34]

      (34) Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporté, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.;Wöhrle, D.; Funabiki, K.; Matsui, M.; Miura, H.; Yanagi, H. Adv. Funct. Mater, 2009, 1, 17.(34) Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporté, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.;Wöhrle, D.; Funabiki, K.; Matsui, M.; Miura, H.; Yanagi, H. Adv. Funct. Mater, 2009, 1, 17.

  • 加载中
计量
  • PDF下载量:  1064
  • 文章访问数:  1835
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2011-12-29
  • 收稿日期:  2011-08-08
  • 网络出版日期:  2011-11-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章