
Citation: YANG Shu, YANG Xiao-Mei, XIE Xiao-Guang. Theoretical Study of Gas-Phase Reaction of YS+ (1Σ+, 3Φ) with COS: YS++COS→YS2++CO[J]. Acta Physico-Chimica Sinica, 2012, 28(08): 1892-1898. doi: 10.3866/PKU.WHXB201205241

YS+(1Σ+, 3Φ)与COS气相反应: YS++COS→YS2++CO的理论研究
采用密度泛函B3LYP方法研究了硫化钇离子YS+ (1Σ+, 3Φ)与硫转移试剂COS在气相中的反应: YS++COS→YS2++CO. 在单重基态和三重激发态势能面上都找到了四条反应通道. 但是除一条反应通道之外, 其他的反应机理和几何结构变化趋势在不同的势能面上有很大不同. 实验中生成YS2+ 所表现出的吸热特征来自于在基态反应中的三条通道(A, B和C), 其活化势垒分别为28.3, 140.5和120.2 kJ·mol-1. 计算结果表明硫转移反应没有双态反应活性, 因此产物YS2+ 在低能量区的放热特征是由于基态反应物中还混有残留的激发态YS+.
English
Theoretical Study of Gas-Phase Reaction of YS+ (1Σ+, 3Φ) with COS: YS++COS→YS2++CO
The gas-phase reactions of YS+ (1Σ+, 3Φ) with an S-transfer reagent (COS), YS++COS→YS2++CO, were studied using density functional theory at the B3LYP/6-311+G* level. Four parallel reaction pathways were identified on both the ground- and excited-state surfaces. The mechanisms and the geometrical change trends on the different surfaces are quite different, except in the case of one reaction channel. The experimentally observed endothermic feature of the formation of YS2+ can be attributed to three reaction paths, A, B, and C, with calculation barriers of 28.3, 140.5, and 120.2 kJ mol-1, respectively, on the ground singlet surface. Our calculation results show that the title reactions have no two-state reactivity and the exothermic feature of the YS2+ cross-section observed in the experiments is attributed to reaction of the residual excited-state of YS+ in the reactants.
-
Key words:
-
Yttrium sulfide cation
- / COS
- / Reaction mechanism
- / B3LYP
-
-
[1]
(1) Stiefel, E. I.; Matsmoto, K. Transition Metal Sulfur Chemistry, ACS Symposium Series 653, 1st ed.; American ChemicalSociety:Washington DC, 1996; pp 2-38.
(1) Stiefel, E. I.; Matsmoto, K. Transition Metal Sulfur Chemistry, ACS Symposium Series 653, 1st ed.; American ChemicalSociety:Washington DC, 1996; pp 2-38.
-
[2]
(2) Bhadure, M.; Mitchell, P. C. H. J. Catal. 1982, 77, 132. doi: 10.1016/0021-9517(82)90153-1(2) Bhadure, M.; Mitchell, P. C. H. J. Catal. 1982, 77, 132. doi: 10.1016/0021-9517(82)90153-1
-
[3]
(3) Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1990, 94, 208. doi: 10.1021/j100364a034(3) Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1990, 94, 208. doi: 10.1021/j100364a034
-
[4]
(4) Schults, R. H.; Elkind, J. L.; Armentrout, P. B. J. Am. Chem. Soc. 1988, 110, 411. doi: 10.1021/ja00210a017(4) Schults, R. H.; Elkind, J. L.; Armentrout, P. B. J. Am. Chem. Soc. 1988, 110, 411. doi: 10.1021/ja00210a017
-
[5]
(5) Armentrout, P. B. Annu. Rev. Phys. Chem. 1990, 41, 313. doi: 10.1146/annurev.pc.41.100190.001525(5) Armentrout, P. B. Annu. Rev. Phys. Chem. 1990, 41, 313. doi: 10.1146/annurev.pc.41.100190.001525
-
[6]
(6) Castleman, A.W.; Keesee, R. G. Chem. Rev. 1986, 86, 589. doi: 10.1021/cr00073a005(6) Castleman, A.W.; Keesee, R. G. Chem. Rev. 1986, 86, 589. doi: 10.1021/cr00073a005
-
[7]
(7) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout,P. B. J. Phys. Chem. A 2000, 104 (21), 5046. doi: 10.1021/jp994228o(7) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout,P. B. J. Phys. Chem. A 2000, 104 (21), 5046. doi: 10.1021/jp994228o
-
[8]
(8) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2006, 249/250, 263.(8) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2006, 249/250, 263.
-
[9]
(9) Kretzschmar, I.; Fiedler, A.; Harvey, J. N.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 1997, 101 (35), 6252. doi: 10.1021/jp971941+(9) Kretzschmar, I.; Fiedler, A.; Harvey, J. N.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 1997, 101 (35), 6252. doi: 10.1021/jp971941+
-
[10]
(10) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.;Armentrout, P. B. J. Phys. Chem. A 1998, 102 (49), 10060. doi: 10.1021/jp982199w(10) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.;Armentrout, P. B. J. Phys. Chem. A 1998, 102 (49), 10060. doi: 10.1021/jp982199w
-
[11]
(11) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2003, 228, 439.(11) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2003, 228, 439.
-
[12]
(12) Armentrout, P. B.; Kretzschmar, I. J. Phys. Chem. A 2009, 113 (41), 10955. doi: 10.1021/jp907253r(12) Armentrout, P. B.; Kretzschmar, I. J. Phys. Chem. A 2009, 113 (41), 10955. doi: 10.1021/jp907253r
-
[13]
(13) Rue, C.; Armentrout, P. B.; Kretzschmar, I.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 2002, 106 (42), 9788. doi: 10.1021/jp020161k(13) Rue, C.; Armentrout, P. B.; Kretzschmar, I.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 2002, 106 (42), 9788. doi: 10.1021/jp020161k
-
[14]
(14) Flemmig, B.; Kretzschmar, I.; Friend, C. M.; Hoffmann, R.J. Phys. Chem. A 2004, 108 (15), 2972. doi: 10.1021/jp0369701(14) Flemmig, B.; Kretzschmar, I.; Friend, C. M.; Hoffmann, R.J. Phys. Chem. A 2004, 108 (15), 2972. doi: 10.1021/jp0369701
-
[15]
(15) Frommer, J.; Nachtegaal, M.; Czekaj, I.;Weng, T.; Kretzschmar,R. J. Phys. Chem. A 2009, 113 (44), 12171. doi: 10.1021/jp902604p(15) Frommer, J.; Nachtegaal, M.; Czekaj, I.;Weng, T.; Kretzschmar,R. J. Phys. Chem. A 2009, 113 (44), 12171. doi: 10.1021/jp902604p
-
[16]
(16) Villarroel, O. J.; Laboren, I. E.; Bellert, D. J. J. Phys. Chem. A2012, 116 (12), 3081. doi: 10.1021/jp2047135(16) Villarroel, O. J.; Laboren, I. E.; Bellert, D. J. J. Phys. Chem. A2012, 116 (12), 3081. doi: 10.1021/jp2047135
-
[17]
(17) Gennari, M.; Retegan, M.; DeBeer, S.; Pécaut, J.; Neese, F.;Collomb, M.; Duboc, C. Inorg. Chem. 2011, 50 (20), 10047.doi: 10.1021/ic200899w(17) Gennari, M.; Retegan, M.; DeBeer, S.; Pécaut, J.; Neese, F.;Collomb, M.; Duboc, C. Inorg. Chem. 2011, 50 (20), 10047.doi: 10.1021/ic200899w
-
[18]
(18) Chandrasekhar, V.; Senapati, T.; Dey, A,; Das, S.; Kalisz, M.;Clérac, R. Inorg. Chem. 2012, 51 (4), 2031. doi: 10.1021/ic201463g(18) Chandrasekhar, V.; Senapati, T.; Dey, A,; Das, S.; Kalisz, M.;Clérac, R. Inorg. Chem. 2012, 51 (4), 2031. doi: 10.1021/ic201463g
-
[19]
(19) Yang, X.; Yu, S.; Li, T.; Yao, L.; Hu, D.; Xie, X. J. Mol. Struct. -Theochem 2009, 901 (1/3), 34.(19) Yang, X.; Yu, S.; Li, T.; Yao, L.; Hu, D.; Xie, X. J. Mol. Struct. -Theochem 2009, 901 (1/3), 34.
-
[20]
(20) Gao, S. L.; Xu, J. L.; Xie, X. G. Chem. Phys. 2005, 312, 187.doi: 10.1016/j.chemphys.2004.11.040(20) Gao, S. L.; Xu, J. L.; Xie, X. G. Chem. Phys. 2005, 312, 187.doi: 10.1016/j.chemphys.2004.11.040
-
[21]
(21) Xie, X.; Gao, S.; Xu, J. J. Mol. Struct. -Theochem 2005, 715 (1/3), 65.(21) Xie, X.; Gao, S.; Xu, J. J. Mol. Struct. -Theochem 2005, 715 (1/3), 65.
-
[22]
(22) Yu, S.; Li, T.; Yao, L.; Yang, X.; Xie, X. J. Mol. Struct. - Theochem 2009, 901 (1/3), 249.(22) Yu, S.; Li, T.; Yao, L.; Yang, X.; Xie, X. J. Mol. Struct. - Theochem 2009, 901 (1/3), 249.
-
[23]
(23) udbout, N.; Salahub, D. R.; Andzelm, J.;Wimmer, E. Can. J. Chem. 1992, 70, 560. doi: 10.1139/v92-079(23) udbout, N.; Salahub, D. R.; Andzelm, J.;Wimmer, E. Can. J. Chem. 1992, 70, 560. doi: 10.1139/v92-079
-
[24]
(24) Chase, M.W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.;McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data1985, 14 (Suppl. 1), 1112.(24) Chase, M.W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.;McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data1985, 14 (Suppl. 1), 1112.
-
[25]
(25) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353. doi: 10.1021/cr980404y(25) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353. doi: 10.1021/cr980404y
-
[26]
(26) Read, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88,899. doi: 10.1021/cr00088a005(26) Read, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88,899. doi: 10.1021/cr00088a005
-
[27]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[28]
(28) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Advances in Metal and Semi-Conductor Clusters: Metal-Ligand Bonding and Metal-Ion Solvation, 1st ed.; Elsevier: New York,2001; Vol. 5, p347.
(28) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Advances in Metal and Semi-Conductor Clusters: Metal-Ligand Bonding and Metal-Ion Solvation, 1st ed.; Elsevier: New York,2001; Vol. 5, p347.
-
[1]
-

计量
- PDF下载量: 614
- 文章访问数: 2204
- HTML全文浏览量: 51