表面增强拉曼散射纳米针尖用于单细胞内环境的检测研究

陈颖 梅荣超 王运庆 刘万卉 陈令新

引用本文: 陈颖, 梅荣超, 王运庆, 刘万卉, 陈令新. 表面增强拉曼散射纳米针尖用于单细胞内环境的检测研究[J]. 分析化学, 2023, 51(3): 356-363. doi: 10.19756/j.issn.0253-3820.221167 shu
Citation:  CHEN Ying,  MEI Rong-Chao,  WANG Yun-Qing,  LIU Wan-Hui,  CHEN Ling-Xin. Detection of Single Cell Intracellular Environment by Surface Enhanced Raman Scattering Nanotip[J]. Chinese Journal of Analytical Chemistry, 2023, 51(3): 356-363. doi: 10.19756/j.issn.0253-3820.221167 shu

表面增强拉曼散射纳米针尖用于单细胞内环境的检测研究

    通讯作者: 王运庆,E-mail:yqwang@yic.ac.cn; 陈令新,E-mail:lxchen@yic.ac.cn
  • 基金项目:

    国家自然科学基金项目(Nos.42076199,21976209)资助。

摘要: 表面增强拉曼散射(SERS)纳米针尖是一类单细胞分析新技术,在细胞内环境检测和细胞生理功能研究等方面具有良好的应用潜力。由于SERS纳米针尖可负载的贵金属粒子数量少,因此,筛选和修饰高SERS增强能力的纳米粒子是确保其检测灵敏度的关键。本研究制备了一种核-卫星结构的Au纳米粒子,单颗粒信号较传统Au纳米球和Au纳米星显著提高。将此粒子涂覆在尖端直径约为200 nm的玻璃毛细管表面,形成SERS纳米针尖,进一步功能化修饰靶标敏感型拉曼报告分子,使其具备检测微区环境中pH值和O2的能力。作为应用性能考察,采用SERS纳米针尖实现了单个HL-7702细胞内pH值和缺氧状态监测。本研究解决了传统颗粒态SERS探针用于细胞分析面临的随机聚集和难以精确定位等瓶颈问题,为单细胞内环境检测分析提供了一种新的分析工具。

English


    1. [1]

      KELLER L, PANTEL K. Nat. Rev. Cancer, 2019, 19(10):553-567.KELLER L, PANTEL K. Nat. Rev. Cancer, 2019, 19(10):553-567.

    2. [2]

      ARABI M, OSTOVAN A, ZHANG Z, WANG Y, MEI R, FU L, WANG X, MA J, CHEN L. Biosens. Bioelectron., 2021, 174:112825.ARABI M, OSTOVAN A, ZHANG Z, WANG Y, MEI R, FU L, WANG X, MA J, CHEN L. Biosens. Bioelectron., 2021, 174:112825.

    3. [3]

      GONG T, CUI Y, GOH D, VOON K K, SHUM P P, HUMBERT G, AUGUSTE J L, DINH X Q, YONG K T, OLIVO M. Biosens. Bioelectron., 2015, 64:227-233.GONG T, CUI Y, GOH D, VOON K K, SHUM P P, HUMBERT G, AUGUSTE J L, DINH X Q, YONG K T, OLIVO M. Biosens. Bioelectron., 2015, 64:227-233.

    4. [4]

      YANG Dan, ZHOU Jing, LI Yu-Jing, ZHAO Rui, FENG Wen-Nan, HE Jin, WANG Zhe, YANG Guo-Cheng. Chin. J. Anal. Chem., 2020, 48(6):742-749杨丹, 周晶, 李语静, 赵锐, 冯文南, 何劲, 王哲, 杨国程. 分析化学, 2020, 48(6):742-749.

    5. [5]

      CUI J, HU K, SUN J J, QU L L, LI D W. Biosens. Bioelectron., 2016, 85:324-330.CUI J, HU K, SUN J J, QU L L, LI D W. Biosens. Bioelectron., 2016, 85:324-330.

    6. [6]

      MEI R, WANG Y, YU Q, YIN Y, ZHAO R, CHEN L. ACS Appl. Mater. Interfaces, 2020, 12(2):2059-2066.MEI R, WANG Y, YU Q, YIN Y, ZHAO R, CHEN L. ACS Appl. Mater. Interfaces, 2020, 12(2):2059-2066.

    7. [7]

      GUO J, HE J. Biophys. J., 2019, 116(3):146A.GUO J, HE J. Biophys. J., 2019, 116(3):146A.

    8. [8]

      HANIF S, LIU H L, AHMED S A, YANG J M, ZHOU Y, PANG J, JI L N, XIA X H, WANG K. Anal. Chem., 2017, 89(18):9911-9917.HANIF S, LIU H L, AHMED S A, YANG J M, ZHOU Y, PANG J, JI L N, XIA X H, WANG K. Anal. Chem., 2017, 89(18):9911-9917.

    9. [9]

      ZHU D, LI A, DI Y, WANG Z, SHI J, NI X, WANG Y. Nanotechnology, 2022, 33(11):115702.ZHU D, LI A, DI Y, WANG Z, SHI J, NI X, WANG Y. Nanotechnology, 2022, 33(11):115702.

    10. [10]

      GUO J, RUBFIARO A S, LAI Y H, MOSCOSO J, CHEN F, LIU Y, WANG X W, HE J. Analyst, 2020145(14):4852-4859.GUO J, RUBFIARO A S, LAI Y H, MOSCOSO J, CHEN F, LIU Y, WANG X W, HE J. Analyst, 2020145(14):4852-4859.

    11. [11]

      WANG J Q, GENG Y J, SHEN Y T, SHI W, XU W Q, XU S P. Sens. Actuators, B, 2019, 290:527-534.WANG J Q, GENG Y J, SHEN Y T, SHI W, XU W Q, XU S P. Sens. Actuators, B, 2019, 290:527-534.

    12. [12]

      HANIF S, LIU H, CHEN M, MUHAMMAD P, ZHOU Y, CAO J, AHMED S A, XU J, XIA X, CHEN H, WANG K. Anal. Chem., 2017, 89(4):2522-2530.HANIF S, LIU H, CHEN M, MUHAMMAD P, ZHOU Y, CAO J, AHMED S A, XU J, XIA X, CHEN H, WANG K. Anal. Chem., 2017, 89(4):2522-2530.

    13. [13]

      CHEN J, WANG J, GENG Y, YUE J, SHI W, LIANG C, XU W, XU S. ACS Sens., 2021, 6(4):1663-1670.CHEN J, WANG J, GENG Y, YUE J, SHI W, LIANG C, XU W, XU S. ACS Sens., 2021, 6(4):1663-1670.

    14. [14]

      LUSSIER F, BRULÉ T, VISHWAKARMA M, DAS T, SPATZ J P, MASSON J F. Nano Lett., 2016, 16(6):3866-3871.LUSSIER F, BRULÉ T, VISHWAKARMA M, DAS T, SPATZ J P, MASSON J F. Nano Lett., 2016, 16(6):3866-3871.

    15. [15]

      ZHAO X, CAMPBELL S, EL-KHOURY P Z, JIA Y, WALLACE G Q, CLAING A, BAZUIN C G, MASSON J F. ACS Sens., 2021, 6(4):1649-1662.ZHAO X, CAMPBELL S, EL-KHOURY P Z, JIA Y, WALLACE G Q, CLAING A, BAZUIN C G, MASSON J F. ACS Sens., 2021, 6(4):1649-1662.

    16. [16]

      LIU J, HE H, XIE D, WEN Y, LIU Z. Nat. Protoc., 2021, 16(7):3522-3546.LIU J, HE H, XIE D, WEN Y, LIU Z. Nat. Protoc., 2021, 16(7):3522-3546.

    17. [17]

      ZHAO X, CAMPBELL S, WALLACE G Q, CLAING A, BAZUIN C G, MASSON J F. ACS Sens., 2020, 5(7):2155-2167.ZHAO X, CAMPBELL S, WALLACE G Q, CLAING A, BAZUIN C G, MASSON J F. ACS Sens., 2020, 5(7):2155-2167.

    18. [18]

      ZHENG Y, ZHONG X, LI Z, XIA Y. Part. Part. Syst. Charact., 2014, 31(2):266-273.ZHENG Y, ZHONG X, LI Z, XIA Y. Part. Part. Syst. Charact., 2014, 31(2):266-273.

    19. [19]

      MEI R, WANG Y, LIU W, CHEN L. ACS Appl. Mater. Interfaces, 2018, 10(28):23605-23616.MEI R, WANG Y, LIU W, CHEN L. ACS Appl. Mater. Interfaces, 2018, 10(28):23605-23616.

    20. [20]

      SANCHIS-GUAL R, TORRES-CAVANILLAS R, CORONADO-PUCHAU M, GIMÉNEZ-MARQUÉS M, CORONADO E. J. Mater. Chem. C, 2021, 9(33):10811-10818.SANCHIS-GUAL R, TORRES-CAVANILLAS R, CORONADO-PUCHAU M, GIMÉNEZ-MARQUÉS M, CORONADO E. J. Mater. Chem. C, 2021, 9(33):10811-10818.

    21. [21]

      VITOL E A, ORYNBAYEVA Z, BOUCHARD M J, AZIZKHAN-CLIFFORD J, FRIEDMAN G, GOGOTSI Y. ACS Nano, 2009, 3(11):3529-3536.VITOL E A, ORYNBAYEVA Z, BOUCHARD M J, AZIZKHAN-CLIFFORD J, FRIEDMAN G, GOGOTSI Y. ACS Nano, 2009, 3(11):3529-3536.

    22. [22]

      NGUYEN T D, SONG M S, LY N H, LEE S Y, JOO S W. Angew. Chem. Int. Ed., 2019, 58(9):2710-2714.NGUYEN T D, SONG M S, LY N H, LEE S Y, JOO S W. Angew. Chem. Int. Ed., 2019, 58(9):2710-2714.

    23. [23]

      ZHU H, MASSON J F, BAZUIN C G. ACS Appl. Nano Mater., 2020, 3(1):516-529.ZHU H, MASSON J F, BAZUIN C G. ACS Appl. Nano Mater., 2020, 3(1):516-529.

    24. [24]

      KOYUNCU I, TEMIZ E, DURGUN M, KOCYIGIT A, YUKSEKDAG O, SUPURAN C T. Int. J. Biol. Macromol., 2022, 201:37-46.KOYUNCU I, TEMIZ E, DURGUN M, KOCYIGIT A, YUKSEKDAG O, SUPURAN C T. Int. J. Biol. Macromol., 2022, 201:37-46.

    25. [25]

      YU S, YOON J, LEE J, MYUNG S, JANG E, KWAK M, CHO E, JANG J, KIM Y, LEE H. Acta Pharmacol. Sin., 2011, 32(7):912-920.YU S, YOON J, LEE J, MYUNG S, JANG E, KWAK M, CHO E, JANG J, KIM Y, LEE H. Acta Pharmacol. Sin., 2011, 32(7):912-920.

    26. [26]

      HUANG Y F, ZHU H P, LIU G K, WU D Y, REN B, TIAN Z Q. J. Am. Chem. Soc., 2010, 132(27):9244-9246.HUANG Y F, ZHU H P, LIU G K, WU D Y, REN B, TIAN Z Q. J. Am. Chem. Soc., 2010, 132(27):9244-9246.

    27. [27]

      ZHOU J, FANG C, CHANG T, LIU X, SHANGGUAN D. J. Mater. Chem. B, 2013, 1(5):661-667.ZHOU J, FANG C, CHANG T, LIU X, SHANGGUAN D. J. Mater. Chem. B, 2013, 1(5):661-667.

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1813
  • HTML全文浏览量:  124
文章相关
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-10-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章