
Citation: LI Zi-Ying, LI De-Yan, YANG Jian-Mei, HU Rong, YANG Tong, YANG Yun-Hui. Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen[J]. Chinese Journal of Analytical Chemistry, 2022, 50(7): 1032-1040. doi: 10.19756/j.issn.0253-3820.210686

基于FRET-DNA纳米机器的循环信号放大策略用于检测前列腺特异性抗原
English
Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen
-
-
-
[1]
BATH J, TURBERFIELD A J. Nat. Nanotechnol, 2007, 2(5):275-284.BATH J, TURBERFIELD A J. Nat. Nanotechnol, 2007, 2(5):275-284.
-
[2]
DONG Y, YAO C, ZHU Y, YANG L, LUO D, YANG D. Chem. Rev., 2020, 120(17):9420-9481.DONG Y, YAO C, ZHU Y, YANG L, LUO D, YANG D. Chem. Rev., 2020, 120(17):9420-9481.
-
[3]
YANG W, SHEN Y, ZHANG D, LI C, YUAN R, XU W. Anal. Chem., 2019, 91(12):7782-7789.YANG W, SHEN Y, ZHANG D, LI C, YUAN R, XU W. Anal. Chem., 2019, 91(12):7782-7789.
-
[4]
TORELLI E, MARINI M, PALMANO S, PIANTANIDA L, POLANO C, SCARPELLINI A, LAZZARINO M, FIRRAO G. Small, 2014, 10(14):2918-2926.TORELLI E, MARINI M, PALMANO S, PIANTANIDA L, POLANO C, SCARPELLINI A, LAZZARINO M, FIRRAO G. Small, 2014, 10(14):2918-2926.
-
[5]
CHEN K, HUANG Q, FU T, KE G, ZHAO Z, ZHANG X, TAN W. Anal. Chem., 2020, 92(11):7404-7408.CHEN K, HUANG Q, FU T, KE G, ZHAO Z, ZHANG X, TAN W. Anal. Chem., 2020, 92(11):7404-7408.
-
[6]
MASON S D, TANG Y, LI Y, XIE X, LI F. TrAC-Trends Anal. Chem., 2018, 107:212-221.MASON S D, TANG Y, LI Y, XIE X, LI F. TrAC-Trends Anal. Chem., 2018, 107:212-221.
-
[7]
CAO L P, WANG Y, BAI Y, JIANG Y J, LI C M, ZUO H, LI Y F, ZHEN S J, HUANG C Z. ACS Appl. Nano Mater., 2021, 4(3):2849-2854.CAO L P, WANG Y, BAI Y, JIANG Y J, LI C M, ZUO H, LI Y F, ZHEN S J, HUANG C Z. ACS Appl. Nano Mater., 2021, 4(3):2849-2854.
-
[8]
YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.
-
[9]
HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.
-
[10]
WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.
-
[11]
YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.
-
[12]
YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.
-
[13]
ZHONG X, YANG S, YANG P, DU H, HOU X, CHEN J, ZHOU R. Chem.-Eur. J., 2018, 24(71):19024-19031.ZHONG X, YANG S, YANG P, DU H, HOU X, CHEN J, ZHOU R. Chem.-Eur. J., 2018, 24(71):19024-19031.
-
[14]
ZHANG R, LI S, WANG J, QU X, ZHAO Y, LIU S, WANG Y, HUANG J, YU J. Sens. Actuators, B, 2020, 320:128385.ZHANG R, LI S, WANG J, QU X, ZHAO Y, LIU S, WANG Y, HUANG J, YU J. Sens. Actuators, B, 2020, 320:128385.
-
[15]
HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem., Int. Ed., 2016, 55(9):3073-3076.HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem., Int. Ed., 2016, 55(9):3073-3076.
-
[16]
LV Y, CUI L, PENG R, ZHAO Z, QIU L, CHEN H, JIN C, ZHANG X B, TAN W. Anal. Chem., 2015, 87(23):11714-11720.LV Y, CUI L, PENG R, ZHAO Z, QIU L, CHEN H, JIN C, ZHANG X B, TAN W. Anal. Chem., 2015, 87(23):11714-11720.
-
[17]
LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC-Trends Anal. Chem., 2021, 134:116142.LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC-Trends Anal. Chem., 2021, 134:116142.
-
[18]
CHEN B, SU Q, KONG W, WANG Y, SHI P, WANG F. J. Mater. Chem. B, 2018, 6(19):2924-2944.CHEN B, SU Q, KONG W, WANG Y, SHI P, WANG F. J. Mater. Chem. B, 2018, 6(19):2924-2944.
-
[19]
JARES-ERIJMAN E A, JOVIN T M. Nat. Biotechnol., 2003, 21(11):1387-1395.JARES-ERIJMAN E A, JOVIN T M. Nat. Biotechnol., 2003, 21(11):1387-1395.
-
[20]
ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.
-
[21]
MA F, WEI S H, ZHANG C Y. Anal. Chem., 2019, 91(12):7505-7509.MA F, WEI S H, ZHANG C Y. Anal. Chem., 2019, 91(12):7505-7509.
-
[22]
GAO R, CHENG Z, WANG X, YU L, GUO Z, ZHAO G, CHOO J. Biosens. Bioelectron., 2018, 119:126-133.GAO R, CHENG Z, WANG X, YU L, GUO Z, ZHAO G, CHOO J. Biosens. Bioelectron., 2018, 119:126-133.
-
[23]
YANG T, HOU P, ZHENG L L, ZHAN L, GAO P F, LI Y F, HUANG C Z. Nanoscale, 2017, 9(43):17020-17028.YANG T, HOU P, ZHENG L L, ZHAN L, GAO P F, LI Y F, HUANG C Z. Nanoscale, 2017, 9(43):17020-17028.
-
[24]
SRIVASTAVA M, NIRALA N R, SRIVASTAVA S K, PRAKASH R. Sci. Rep., 2018, 8:1923.SRIVASTAVA M, NIRALA N R, SRIVASTAVA S K, PRAKASH R. Sci. Rep., 2018, 8:1923.
-
[25]
FENG Z, ZHI S, GUO L, ZHOU Y, LEI C. Microchim. Acta, 2019, 186(4):252.FENG Z, ZHI S, GUO L, ZHOU Y, LEI C. Microchim. Acta, 2019, 186(4):252.
-
[26]
CHEN Y, GUO X, LIU W, ZHANG L. Microchim. Acta, 2019, 186(2):112.CHEN Y, GUO X, LIU W, ZHANG L. Microchim. Acta, 2019, 186(2):112.
-
[27]
FENG D, SU J, XU Y, HE G, WANG C, WANG X, PAN T, DING X, MI X. Microsyst. Nanoeng., 2021, 7(1):33.FENG D, SU J, XU Y, HE G, WANG C, WANG X, PAN T, DING X, MI X. Microsyst. Nanoeng., 2021, 7(1):33.
-
[28]
FANG B Y, AN J, LIU B, ZHAO Y D. Colloids Surf., B, 2019, 175:358-364.FANG B Y, AN J, LIU B, ZHAO Y D. Colloids Surf., B, 2019, 175:358-364.
-
[1]
-

计量
- PDF下载量: 10
- 文章访问数: 705
- HTML全文浏览量: 121