金纳米粒子的细胞毒性

李铸衡 马立娜 刘殿骏 王振新

引用本文: 李铸衡, 马立娜, 刘殿骏, 王振新. 金纳米粒子的细胞毒性[J]. 应用化学, 2016, 33(9): 1009-1016. doi: 10.11944/j.issn.1000-0518.2016.09.160075 shu
Citation:  LI Zhuheng, MA Lina, LIU Dianjun, WANG Zhenxin. Cytotoxicity of Gold Nanoparticles[J]. Chinese Journal of Applied Chemistry, 2016, 33(9): 1009-1016. doi: 10.11944/j.issn.1000-0518.2016.09.160075 shu

金纳米粒子的细胞毒性

    通讯作者: 王振新,教授;Tel/Fax:0431-85262243;E-mail:wangzx@ciac.ac.cn;研究方向:贵金属纳米粒子合成与应用;生物分析与生物分子相互作用;高通量分析
  • 基金项目:

    国家自然科学基金资助项目(21475126) 

摘要: 金纳米粒子(AuNPs)是构建用于诊断和治疗的纳米药物/探针的理想纳米材料之一,因此研究AuNPs与细胞的相互作用具有重要意义。本文详细分析了金纳米簇(AuNCs)、球形金纳米粒子A(AuNPss)、金纳米球壳(AuNSs)和金纳米棒(AuNRs)等不同形貌的Au NPs对不同细胞模型的细胞毒性;讨论了AuNPs的理化性质(大小、形状、化学功能和表面电荷)对其细胞毒性的影响。总结了AuNP细胞毒性研究遇到的挑战并提出相应解决方法。

English

  • 
    1. [1] Murphy C J,Gole A M,Stone J W,et al.Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging[J].Acc Chem Res,2008,41(12):1721-1730.[1] Murphy C J,Gole A M,Stone J W,et al.Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging[J].Acc Chem Res,2008,41(12):1721-1730.

    2. [2] Caruso F,Hyeon T,Rotello V M.Nanomedicine[J].Chem Soc Rev,2012,41(7):2537-2538.[2] Caruso F,Hyeon T,Rotello V M.Nanomedicine[J].Chem Soc Rev,2012,41(7):2537-2538.

    3. [3] Pelaz B,Jaber S,de Aberasturi D J,et al.The State of Nanoparticle-based Nanoscience and Biotechnology:Progress,Promises,and Challenges[J].ACS Nano,2012,6(10):8468-8483.[3] Pelaz B,Jaber S,de Aberasturi D J,et al.The State of Nanoparticle-based Nanoscience and Biotechnology:Progress,Promises,and Challenges[J].ACS Nano,2012,6(10):8468-8483.

    4. [4] Feng L Y,Wu L,Qu X G.New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide[J].Adv Mater,2013,25(2):168-186.[4] Feng L Y,Wu L,Qu X G.New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide[J].Adv Mater,2013,25(2):168-186.

    5. [5] Yoon H J,Kozminsky M,Nagrath S.Emerging Role of Nanomaterials in Circulating Tumor Cell Isolation and Analysis[J].ACS Nano,2014,8(3):1995-2017.[5] Yoon H J,Kozminsky M,Nagrath S.Emerging Role of Nanomaterials in Circulating Tumor Cell Isolation and Analysis[J].ACS Nano,2014,8(3):1995-2017.

    6. [6] Jiang Z,Le Ngoc D B,Akash G,et al.Cell Surface-Based Sensing with Metallic Nanoparticles[J].Chem Soc Rev,2015,44(13):4264-4274.[6] Jiang Z,Le Ngoc D B,Akash G,et al.Cell Surface-Based Sensing with Metallic Nanoparticles[J].Chem Soc Rev,2015,44(13):4264-4274.

    7. [7] Prodi L,Rampazzo E,Rastrelli F,et al.Imaging Agents Based on Lanthanide Doped Nanoparticles[J].Chem Soc Rev,2015,44(14):4922-4952.[7] Prodi L,Rampazzo E,Rastrelli F,et al.Imaging Agents Based on Lanthanide Doped Nanoparticles[J].Chem Soc Rev,2015,44(14):4922-4952.

    8. [8] He Q,Guo S,Qian Z,et al.Development of Individualized Anti-Metastasis Strategies by Engineering Nanomedicines[J].Chem Soc Rev,2015,44(17):6258-6286.[8] He Q,Guo S,Qian Z,et al.Development of Individualized Anti-Metastasis Strategies by Engineering Nanomedicines[J].Chem Soc Rev,2015,44(17):6258-6286.

    9. [9] Karimi M,Ghasemi A,Zangabad P S,et al.Smart Micro/Nanoparticles in Stimulus-Responsive Drug/Gene Delivery Systems[J].Chem Soc Rev,2016,45(5):1457-1501.[9] Karimi M,Ghasemi A,Zangabad P S,et al.Smart Micro/Nanoparticles in Stimulus-Responsive Drug/Gene Delivery Systems[J].Chem Soc Rev,2016,45(5):1457-1501.

    10. [10] Deng J J,Yu P,Wang Y X,et al.Visualization and Quantification of Neurochemicals with Gold Nanoparticles:Opportunities and Challenges[J].Adv Mater,2014,26(40):6933-6943.[10] Deng J J,Yu P,Wang Y X,et al.Visualization and Quantification of Neurochemicals with Gold Nanoparticles:Opportunities and Challenges[J].Adv Mater,2014,26(40):6933-6943.

    11. [11] Zeng Y Y,Zhang D,Wu M,et al.Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma[J].ACS Appl Mater Interfaces,2014,6(16):14266-14277.[11] Zeng Y Y,Zhang D,Wu M,et al.Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma[J].ACS Appl Mater Interfaces,2014,6(16):14266-14277.

    12. [12] Dickerson E B,Dreaden E C,Huang X,et al.Gold Nanorod Assisted Near-Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinoma in Mice[J].Cancer Lett,2008,269(1):57-66.[12] Dickerson E B,Dreaden E C,Huang X,et al.Gold Nanorod Assisted Near-Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinoma in Mice[J].Cancer Lett,2008,269(1):57-66.

    13. [13] Bardhan R,Chen W,Bartels M,et al.Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in vivo[J].Nano Lett,2010,10(12):4920-4928.[13] Bardhan R,Chen W,Bartels M,et al.Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in vivo[J].Nano Lett,2010,10(12):4920-4928.

    14. [14] Ayala-Orozco C,Urban C,Knight M W,et al.Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment:Benchmarking against Nanoshells[J].ACS Nano,2014,8(6):6372-6381.[14] Ayala-Orozco C,Urban C,Knight M W,et al.Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment:Benchmarking against Nanoshells[J].ACS Nano,2014,8(6):6372-6381.

    15. [15] Alkilany A M,Lohse S E,Murphy C J.The Gold Standard:Gold Nanoparticle Libraries to Understand the Nano-Bio Interface[J].Acc Chem Res,2012,46(3):650-661.[15] Alkilany A M,Lohse S E,Murphy C J.The Gold Standard:Gold Nanoparticle Libraries to Understand the Nano-Bio Interface[J].Acc Chem Res,2012,46(3):650-661.

    16. [16] Joris F,Manshian B B,Peynshaert K,et al.Assessing Nanoparticle Toxicity in Cell-Based Assays:Influence of Cell Culture Parameters and Optimized Models for Bridging the in Vitro-in Vivo Gap[J].Chem Soc Rev,2013,42(21):8339-8359.[16] Joris F,Manshian B B,Peynshaert K,et al.Assessing Nanoparticle Toxicity in Cell-Based Assays:Influence of Cell Culture Parameters and Optimized Models for Bridging the in Vitro-in Vivo Gap[J].Chem Soc Rev,2013,42(21):8339-8359.

    17. [17] Ilaria Fratoddi,Iole Venditti,Cesare Cametti,et al.The Puzzle of Toxicity of Gold Nanoparticles.The Case-Study of Hela Cells[J].Toxicol Res,2015,4(4):796-800.[17] Ilaria Fratoddi,Iole Venditti,Cesare Cametti,et al.The Puzzle of Toxicity of Gold Nanoparticles.The Case-Study of Hela Cells[J].Toxicol Res,2015,4(4):796-800.

    18. [18] Soenen S J,Rivera-Gil P,Montenegro J M,et al.Cellular Toxicity of Inorganic Nanoparticles:Common Aspects and Guidelines for Improved Nanotoxicity Evaluation[J].Nano Today,2011,6(5):446-465.[18] Soenen S J,Rivera-Gil P,Montenegro J M,et al.Cellular Toxicity of Inorganic Nanoparticles:Common Aspects and Guidelines for Improved Nanotoxicity Evaluation[J].Nano Today,2011,6(5):446-465.

    19. [19] Soenen S J,Parak W J,Rejman J,et al.Intracellular Stability of Inorganic Nanoparticles:Effects on Cytotoxicity,Particle Functionality,and Biomedical Applications[J].Chem Rev,2015,115(5):2109-2135.[19] Soenen S J,Parak W J,Rejman J,et al.Intracellular Stability of Inorganic Nanoparticles:Effects on Cytotoxicity,Particle Functionality,and Biomedical Applications[J].Chem Rev,2015,115(5):2109-2135.

    20. [20] Docter D,Westmeier D,Markiewicz M,et al.The Nanoparticle Biomolecule Corona:Lessons Learned-Challenge Accepted?[J].Chem Soc Rev,2015,44(17):6094-6121.[20] Docter D,Westmeier D,Markiewicz M,et al.The Nanoparticle Biomolecule Corona:Lessons Learned-Challenge Accepted?[J].Chem Soc Rev,2015,44(17):6094-6121.

    21. [21] Lewinski N,Colvin V,Drezek R.Cytotoxicity of Nanoparticles[J].Small,2008,4(1):26-49.[21] Lewinski N,Colvin V,Drezek R.Cytotoxicity of Nanoparticles[J].Small,2008,4(1):26-49.

    22. [22] Chithrani B D,Chan W C W.Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes[J].Nano Lett,2007,7(6):1542-1550.[22] Chithrani B D,Chan W C W.Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes[J].Nano Lett,2007,7(6):1542-1550.

    23. [23] Jiang W,Kim B Y S,Rutka J T,et al.Nanoparticle-Mediated Cellular Response is Size-Dependent[J].Nat Nanotechnol,2008,3(3):145-150.[23] Jiang W,Kim B Y S,Rutka J T,et al.Nanoparticle-Mediated Cellular Response is Size-Dependent[J].Nat Nanotechnol,2008,3(3):145-150.

    24. [24] Gratton S E A,Ropp P A,Pohlhaus P D,et al.The Effect of Particle Design on Cellular Internalization Pathways[J].Proc Natl Acad Sci USA,2008,105(33):11613-11618.[24] Gratton S E A,Ropp P A,Pohlhaus P D,et al.The Effect of Particle Design on Cellular Internalization Pathways[J].Proc Natl Acad Sci USA,2008,105(33):11613-11618.

    25. [25] Mironava T,Hadjiargyrou M,Simon M,et al.Gold Nanoparticles Cellular Toxicity and Recovery:Adipose Derived Stromal Cells[J].Nanotoxicology,2014,8(2):189-201.[25] Mironava T,Hadjiargyrou M,Simon M,et al.Gold Nanoparticles Cellular Toxicity and Recovery:Adipose Derived Stromal Cells[J].Nanotoxicology,2014,8(2):189-201.

    26. [26] Bucchianico D,Fabbrizi M R,Cirillo S,et al.Aneuploidogenic Effects and DNA Oxidation Induced in vitro by Differently Sized Gold Nanoparticles[J].Int J Nanomed,2014,9(1):2191-2204.[26] Bucchianico D,Fabbrizi M R,Cirillo S,et al.Aneuploidogenic Effects and DNA Oxidation Induced in vitro by Differently Sized Gold Nanoparticles[J].Int J Nanomed,2014,9(1):2191-2204.

    27. [27] Wang Y C,Black K C L,Luehmann H,et al.Comparison Study of Gold Nanohexapods,Nanorods,and Nanocages for Photothermal Cancer Treatmen[J].ACS Nano,2013,7(3):2068-2077.[27] Wang Y C,Black K C L,Luehmann H,et al.Comparison Study of Gold Nanohexapods,Nanorods,and Nanocages for Photothermal Cancer Treatmen[J].ACS Nano,2013,7(3):2068-2077.

    28. [28] Cui W J,Li J R,Zhang Y K,et al.Effects of Aggregation and the Surface Properties of Gold Nanoparticles on Cytotoxicity and Cell Growth[J].Nanomed Nanotechnol Biol Med,2012,8(1):46-53.[28] Cui W J,Li J R,Zhang Y K,et al.Effects of Aggregation and the Surface Properties of Gold Nanoparticles on Cytotoxicity and Cell Growth[J].Nanomed Nanotechnol Biol Med,2012,8(1):46-53.

    29. [29] Brandenberger C,Mühlfeld C,Ali Z,et al.Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles[J].Small,2010,6(15):1669-1678.[29] Brandenberger C,Mühlfeld C,Ali Z,et al.Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles[J].Small,2010,6(15):1669-1678.

    30. [30] Bartczak D,Sanchez-Elsner T,Louafi F,et al.Receptor-Mediated Interactions between Colloidal Gold Nanoparticles and Human Umbilical Vein Endothelial Cells[J].Small,2011,7(3):388-394.[30] Bartczak D,Sanchez-Elsner T,Louafi F,et al.Receptor-Mediated Interactions between Colloidal Gold Nanoparticles and Human Umbilical Vein Endothelial Cells[J].Small,2011,7(3):388-394.

    31. [31] Hong R,Han G,Fernández J M,et al.Glutathione-Mediated Delivery and Release Using Monolayer Protected Nanoparticle Carriers[J].J Am Chem Soc,2006,128(4):1078-1079.[31] Hong R,Han G,Fernández J M,et al.Glutathione-Mediated Delivery and Release Using Monolayer Protected Nanoparticle Carriers[J].J Am Chem Soc,2006,128(4):1078-1079.

    32. [32] Krpetic'Ž,Saleemi S,Prior I A,et al.Negotiation of Intracellular Membrane Barriers by TAT-Modified Gold Nanoparticles[J].ACS Nano,2011,5(6):5195-5201.[32] Krpetic'Ž,Saleemi S,Prior I A,et al.Negotiation of Intracellular Membrane Barriers by TAT-Modified Gold Nanoparticles[J].ACS Nano,2011,5(6):5195-5201.

    33. [33] Ahn S,Seo E,Kim K H,et al.Physical Property Control on the Cellular Uptake Pathway and Spatial Distribution of Nanoparticles in Cells[J].J Biomed Nanotechnol,2015,11(6):1051-1070.[33] Ahn S,Seo E,Kim K H,et al.Physical Property Control on the Cellular Uptake Pathway and Spatial Distribution of Nanoparticles in Cells[J].J Biomed Nanotechnol,2015,11(6):1051-1070.

    34. [34] Yao M,He L,McClements D J,et al.Uptake of Gold Nanoparticles by Intestinal Epithelial Cells:Impact of Particle Size on Their Absorption,Accumulation,and Toxicity[J].J Agric Food Chem,2015,63(36):8044-8049.[34] Yao M,He L,McClements D J,et al.Uptake of Gold Nanoparticles by Intestinal Epithelial Cells:Impact of Particle Size on Their Absorption,Accumulation,and Toxicity[J].J Agric Food Chem,2015,63(36):8044-8049.

    35. [35] Daniel M C,Astruc D.Gold Nanoparticles:Assembly,Supramolecular Chemistry,Quantum-Size-Related Properties,and Applications toward Biology,Catalysis,and Nanotechnology[J].Chem Rev,2004,104(1):293-346.[35] Daniel M C,Astruc D.Gold Nanoparticles:Assembly,Supramolecular Chemistry,Quantum-Size-Related Properties,and Applications toward Biology,Catalysis,and Nanotechnology[J].Chem Rev,2004,104(1):293-346.

    36. [36] Jain P K,Huang X H,El-Sayed I H,et al.Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging,Sensing,Biology,and Medicine[J].Acc Chem Res,2008,41(12):1578-1586.[36] Jain P K,Huang X H,El-Sayed I H,et al.Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging,Sensing,Biology,and Medicine[J].Acc Chem Res,2008,41(12):1578-1586.

    37. [37] Xia Y,Li W,Cobley C M,et al.Gold Nanocages:From Synthesis to Theranostic Applications[J].Acc Chem Res,2011,44(10):914-924.[37] Xia Y,Li W,Cobley C M,et al.Gold Nanocages:From Synthesis to Theranostic Applications[J].Acc Chem Res,2011,44(10):914-924.

    38. [38] Han S G,Lee J S,Ahn K,et al.Size-Dependent Clearance of Gold Nanoparticles from Lungs of Sprague Dawley Rats after Short-Term Inhalation Exposure[J].Arch Toxicol,2015,89(7):1083-1094.[38] Han S G,Lee J S,Ahn K,et al.Size-Dependent Clearance of Gold Nanoparticles from Lungs of Sprague Dawley Rats after Short-Term Inhalation Exposure[J].Arch Toxicol,2015,89(7):1083-1094.

    39. [39] Yang H,Du L,Tian X,et al.Effects of Nanoparticle Size and Gestational Age on Maternal Biodistribution and Toxicity of Gold Nanoparticles in Pregnant Mice[J].Toxicol Lett,2014,230(1):10-18.[39] Yang H,Du L,Tian X,et al.Effects of Nanoparticle Size and Gestational Age on Maternal Biodistribution and Toxicity of Gold Nanoparticles in Pregnant Mice[J].Toxicol Lett,2014,230(1):10-18.

    40. [40] Frigell J,Garc A I,G Mez-Vallejo V,et al.68Ga-Labeled Gold Glyconanoparticles for Exploring Blood Brain Barrier Permeability:Preparation,Biodistribution Studies,and Improved Brain Uptake via Neuropeptide Conjugation[J].J Am Chem Soc,2014,136(1):449-457.[40] Frigell J,Garc A I,G Mez-Vallejo V,et al.68Ga-Labeled Gold Glyconanoparticles for Exploring Blood Brain Barrier Permeability:Preparation,Biodistribution Studies,and Improved Brain Uptake via Neuropeptide Conjugation[J].J Am Chem Soc,2014,136(1):449-457.

    41. [41] Sonavane G,Tomoda K,Makino K.Biodistribution of Colloidal Gold Nanoparticles after Intravenous Administration:Effect of Particle Size[J].Colloids Surf B,2008,66(2):274-280.[41] Sonavane G,Tomoda K,Makino K.Biodistribution of Colloidal Gold Nanoparticles after Intravenous Administration:Effect of Particle Size[J].Colloids Surf B,2008,66(2):274-280.

    42. [42] Fraga S,Brand o A,Soares M E,et al.Short-and Long-Term Distribution and Toxicity of Gold Nanoparticles in the Rat after a Single-Dose Intravenous Administration[J].Nanomedicine,2014,10(8):1757-1766.[42] Fraga S,Brand o A,Soares M E,et al.Short-and Long-Term Distribution and Toxicity of Gold Nanoparticles in the Rat after a Single-Dose Intravenous Administration[J].Nanomedicine,2014,10(8):1757-1766.

    43. [43] Zhang X D,Wu D,Shen X,et al.In Vivo Renal Clearance,Biodistribution,Toxicity of Gold Nanoclusters[J].Biomaterials,2012,33(18):4628-4638.[43] Zhang X D,Wu D,Shen X,et al.In Vivo Renal Clearance,Biodistribution,Toxicity of Gold Nanoclusters[J].Biomaterials,2012,33(18):4628-4638.

    44. [44] Wang J,Xie Y,Wang L,et al.In Vivo Pharmacokinetic Features and Biodistribution of Star and Rod Shaped Gold Nanoparticles by Multispectral Optoacoustic Tomography[J].RSC Adv,2015,5(10):7529-7538.[44] Wang J,Xie Y,Wang L,et al.In Vivo Pharmacokinetic Features and Biodistribution of Star and Rod Shaped Gold Nanoparticles by Multispectral Optoacoustic Tomography[J].RSC Adv,2015,5(10):7529-7538.

    45. [45] Pan Y,Neuss S,Leifert A,et al.Size-Dependent Cytotoxicity of Gold Nanoparticles[J].Small,2007,3(11):1941-1949.[45] Pan Y,Neuss S,Leifert A,et al.Size-Dependent Cytotoxicity of Gold Nanoparticles[J].Small,2007,3(11):1941-1949.

    46. [46] Pan Y,Leifert A,Ruau D,et al.Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage[J].Small,2009,5(18):2067-2076.[46] Pan Y,Leifert A,Ruau D,et al.Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage[J].Small,2009,5(18):2067-2076.

    47. [47] Vetten M A,Tlotleng N,Rascher D T,et al.Label-free in vitro Toxicity and Uptake Assessment of Citrate Stabilised Gold Nanoparticles in Three Cell Lines[J].Part Fibre Toxicol,2013,10:50.[47] Vetten M A,Tlotleng N,Rascher D T,et al.Label-free in vitro Toxicity and Uptake Assessment of Citrate Stabilised Gold Nanoparticles in Three Cell Lines[J].Part Fibre Toxicol,2013,10:50.

    48. [48] Wang Y,Li H,Jin Q,et al.Intracellular Host Guest Assembly of Gold Nanoparticles Triggered by Glutathione[J].Chem Commun,2016,52:582-585.[48] Wang Y,Li H,Jin Q,et al.Intracellular Host Guest Assembly of Gold Nanoparticles Triggered by Glutathione[J].Chem Commun,2016,52:582-585.

    49. [49] Albanese A,Chan W C W.Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity[J].ACS Nano,2011,5(7):5478-5489.[49] Albanese A,Chan W C W.Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity[J].ACS Nano,2011,5(7):5478-5489.

    50. [50] Moore T L,Rodriguez-Lorenzo L,Hirsch V,et al.Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions[J].Chem Soc Rev,2015,44(17):6287-6305.[50] Moore T L,Rodriguez-Lorenzo L,Hirsch V,et al.Nanoparticle Colloidal Stability in Cell Culture Media and Impact on Cellular Interactions[J].Chem Soc Rev,2015,44(17):6287-6305.

    51. [51] Hauck T S,Ghazani A A,Chan W C W.Assessing the Effect of Surface Chemistry on Gold Nanorod Uptake,Toxicity,and Gene Expression in Mammalian Cells[J].Small,2008,4(1):153-159.[51] Hauck T S,Ghazani A A,Chan W C W.Assessing the Effect of Surface Chemistry on Gold Nanorod Uptake,Toxicity,and Gene Expression in Mammalian Cells[J].Small,2008,4(1):153-159.

    52. [52] Topete A,Alatorre-Meda M,Villar-lvarez E M,et al.Simple Control of Surface Topography of Gold Nanoshells by a Surfactant-Less Seeded-Growth Method[J].ACS Appl Mater Interfaces,2014,6(14):11142-11157.[52] Topete A,Alatorre-Meda M,Villar-lvarez E M,et al.Simple Control of Surface Topography of Gold Nanoshells by a Surfactant-Less Seeded-Growth Method[J].ACS Appl Mater Interfaces,2014,6(14):11142-11157.

    53. [53] Nowinski A K,White A D,Keefe A J,et al.Biologically Inspired Stealth Peptide-Capped Gold Nanoparticles[J].Langmuir,2014,30(7):1864-1870.[53] Nowinski A K,White A D,Keefe A J,et al.Biologically Inspired Stealth Peptide-Capped Gold Nanoparticles[J].Langmuir,2014,30(7):1864-1870.

    54. [54] Adura C,Guerrero S,Salas E,et al.Stable Conjugates of Peptides with Gold Nanorods for Biomedical Applications with Reduced Effects on Cell Viability[J].ACS Appl Mater Interfaces,2013,5(10):4076-4085.[54] Adura C,Guerrero S,Salas E,et al.Stable Conjugates of Peptides with Gold Nanorods for Biomedical Applications with Reduced Effects on Cell Viability[J].ACS Appl Mater Interfaces,2013,5(10):4076-4085.

    55. [55] Schaeublin N M,Braydich-Stolle L K,Schrand A M,et al.Surface Charge of Gold Nanoparticles Mediates Mechanism of Toxicity[J].Nanoscale,2011,3(2):410-420.[55] Schaeublin N M,Braydich-Stolle L K,Schrand A M,et al.Surface Charge of Gold Nanoparticles Mediates Mechanism of Toxicity[J].Nanoscale,2011,3(2):410-420.

    56. [56] Pillai P P,Huda S,Kowalczyk B,et al.Controlled pH Stability and Adjustable Cellular Uptake of Mixed-Charge Nanoparticles[J].J Am Chem Soc,2013,135(17):6392-6395.[56] Pillai P P,Huda S,Kowalczyk B,et al.Controlled pH Stability and Adjustable Cellular Uptake of Mixed-Charge Nanoparticles[J].J Am Chem Soc,2013,135(17):6392-6395.

    57. [57] Hühn D,Kantner K,Geidel C,et al.Polymer-Coated Nanoparticles Interacting with Proteins and Cells:Focusing on the Sign of the Net Charge[J].ACS Nano,2013,7(4):3253-3263.[57] Hühn D,Kantner K,Geidel C,et al.Polymer-Coated Nanoparticles Interacting with Proteins and Cells:Focusing on the Sign of the Net Charge[J].ACS Nano,2013,7(4):3253-3263.

    58. [58] Goodman C M,McCusker C D,Yilmaz T,et al.Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains[J].Bioconjugate Chem,2004,15(4):897-900.[58] Goodman C M,McCusker C D,Yilmaz T,et al.Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains[J].Bioconjugate Chem,2004,15(4):897-900.

    59. [59] Liu X S,Huang N,Li H,et al.Surface and Size Effects on Cell Interaction if Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells[J].Langmuir,2013,29(29):9138-9148.[59] Liu X S,Huang N,Li H,et al.Surface and Size Effects on Cell Interaction if Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells[J].Langmuir,2013,29(29):9138-9148.

    60. [60] Jiang Y,Huo S,Mizuhara T,et al.The Interplay of Size and Surface Functionality on the Cellular Uptake of sub-10 nm Gold Nanoparticles[J].ACS Nano,2015,9(10):99869993[60] Jiang Y,Huo S,Mizuhara T,et al.The Interplay of Size and Surface Functionality on the Cellular Uptake of sub-10 nm Gold Nanoparticles[J].ACS Nano,2015,9(10):99869993

    61. [61] Alkilany A M,Boulos S P,Lohse S E,et al.Homing Peptide-Conjugated Gold Nanorods:The Effect of Amino Acid Sequence Display on Nanorod Uptake and Cellular Proliferation[J].Bioconjugate Chem,2014,25(6):1162-1171.[61] Alkilany A M,Boulos S P,Lohse S E,et al.Homing Peptide-Conjugated Gold Nanorods:The Effect of Amino Acid Sequence Display on Nanorod Uptake and Cellular Proliferation[J].Bioconjugate Chem,2014,25(6):1162-1171.

    62. [62] Kah J C Y,Grabinski C,Untener E,et al.Protein Coronas on Gold Nanorods Passivated with Amphiphilic Ligands Affect Cytotoxicity and Cellular Response to Penicillin/Streptomycin[J].ACS Nano,2014,8(5):4608-4620.[62] Kah J C Y,Grabinski C,Untener E,et al.Protein Coronas on Gold Nanorods Passivated with Amphiphilic Ligands Affect Cytotoxicity and Cellular Response to Penicillin/Streptomycin[J].ACS Nano,2014,8(5):4608-4620.

    63. [63] Kuo C W,Lai J J,Wei K H,et al.Studies of Surface-Modified Gold Nanowires inside Living Cells[J].Adv Funct Mater,2007,17(18):3707-3714.[63] Kuo C W,Lai J J,Wei K H,et al.Studies of Surface-Modified Gold Nanowires inside Living Cells[J].Adv Funct Mater,2007,17(18):3707-3714.

    64. [64] Lipka J,Semmler-Behnke M,Sperling R A,et al.Biodistribution of PEG-Modified Gold Nanoparticles Following Intratracheal Instillation and Intravenous Injection[J].Biomaterials,2010,31(25):6574-6581.[64] Lipka J,Semmler-Behnke M,Sperling R A,et al.Biodistribution of PEG-Modified Gold Nanoparticles Following Intratracheal Instillation and Intravenous Injection[J].Biomaterials,2010,31(25):6574-6581.

    65. [65] Cheng Y,Dai Q,Morshed R A,et al.Blood-Brain Barrier Permeable Gold Nanoparticles:An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging[J].Small,2014,10(24):5137-5150.[65] Cheng Y,Dai Q,Morshed R A,et al.Blood-Brain Barrier Permeable Gold Nanoparticles:An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging[J].Small,2014,10(24):5137-5150.

    66. [66] Deol S,Weerasuriya N,Shon Y S.Stability,Cytotoxicity And Cell Uptake of Water Soluble Dendron-Conjugated Gold Nanoparticles with 3,12 and 17 nm Cores[J].J Mater Chem B,2015,3(29):6071-6080.[66] Deol S,Weerasuriya N,Shon Y S.Stability,Cytotoxicity And Cell Uptake of Water Soluble Dendron-Conjugated Gold Nanoparticles with 3,12 and 17 nm Cores[J].J Mater Chem B,2015,3(29):6071-6080.

    67. [67] Gogna R,Madan E,Kuppusamy P,et al.Reactive Oxygen Species-Mediated P53 Core-Domain Modifications Determine Apoptotic or Necrotic Death in Cancer Cells[J].Antioxid Redox Signaling,2011,16(5):400-412.[67] Gogna R,Madan E,Kuppusamy P,et al.Reactive Oxygen Species-Mediated P53 Core-Domain Modifications Determine Apoptotic or Necrotic Death in Cancer Cells[J].Antioxid Redox Signaling,2011,16(5):400-412.

    68. [68] Soenen S J,Manshian B,Montenegro J M,et al.Cytotoxic Effects of Gold Nanoparticles:A Multiparametric Study[J].ACS Nano,2012,6(7):5767-5783.[68] Soenen S J,Manshian B,Montenegro J M,et al.Cytotoxic Effects of Gold Nanoparticles:A Multiparametric Study[J].ACS Nano,2012,6(7):5767-5783.

    69. [69] Sharma M,Salisbury R L,Maurer E I,et al.Gold Nanoparticles Induce Transcriptional Activity of NF-Kappa B in a B-Lymphocyte Cell Line[J].Nanoscale,2013,5(9):3747-3756.[69] Sharma M,Salisbury R L,Maurer E I,et al.Gold Nanoparticles Induce Transcriptional Activity of NF-Kappa B in a B-Lymphocyte Cell Line[J].Nanoscale,2013,5(9):3747-3756.

    70. [70] Mironava T,Hadjiargyrou M,Simon M,et al.Gold Nanoparticles Cellular Toxicity and Recovery:Effect of Size,Concentration and Exposure Time[J].Nanotoxicology,2010,4(1):120-137.[70] Mironava T,Hadjiargyrou M,Simon M,et al.Gold Nanoparticles Cellular Toxicity and Recovery:Effect of Size,Concentration and Exposure Time[J].Nanotoxicology,2010,4(1):120-137.

    71. [71] Peynshaert K,Manshian B B,Joris F,et al.Exploiting Intrinsic Nanoparticle Toxicity:The Pros and Cons of Nanoparticle-Induced Autophagy in Biomedical Research[J].Chem Rev,2014,114(15):7581-7609.[71] Peynshaert K,Manshian B B,Joris F,et al.Exploiting Intrinsic Nanoparticle Toxicity:The Pros and Cons of Nanoparticle-Induced Autophagy in Biomedical Research[J].Chem Rev,2014,114(15):7581-7609.

    72. [72] Ma Z,Bai J,Jiang X,Monitoring of the Enzymatic Degradation of Protein Corona and Evaluating the Accompanying Cytotoxicity of Nanoparticles[J].ACS Appl Mater Interfaces,2015,7(32):17614-17622.[72] Ma Z,Bai J,Jiang X,Monitoring of the Enzymatic Degradation of Protein Corona and Evaluating the Accompanying Cytotoxicity of Nanoparticles[J].ACS Appl Mater Interfaces,2015,7(32):17614-17622.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  1009
  • HTML全文浏览量:  207
文章相关
  • 收稿日期:  2016-02-29
  • 网络出版日期:  2016-04-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章