磁性荧光双功能复合纳米粒子Fe3O4@SiO2@ZrO2:Tb3+的合成和表征

苑森文 赵朗 李宏涛

引用本文: 苑森文, 赵朗, 李宏涛. 磁性荧光双功能复合纳米粒子Fe3O4@SiO2@ZrO2:Tb3+的合成和表征[J]. 应用化学, 2016, 33(8): 968-976. doi: 10.11944/j.issn.1000-0518.2016.08.150396 shu
Citation:  YUAN Senwen, ZHAO Lang, LI Hongtao. Synthesis and Characterization of Magnetic and Fluorescent Bifunctional Fe3O4@SiO2@ZrO2:Tb3+ Spherical Nanocomposites[J]. Chinese Journal of Applied Chemistry, 2016, 33(8): 968-976. doi: 10.11944/j.issn.1000-0518.2016.08.150396 shu

磁性荧光双功能复合纳米粒子Fe3O4@SiO2@ZrO2:Tb3+的合成和表征

    通讯作者: 李宏涛,教授; Tel:0431-85716471; E-mail:lihongtao@mail.ccut.edu.cn; 研究方向:材料化学;赵朗,副研究员; Tel:0431-85262054; E-mail:zhaolang@ciac.ac.cn; 研究方向:磁性材料的合成及性能; 李宏涛,教授; Tel:0431-85716471; E-mail:lihongtao@mail.ccut.edu.cn; 研究方向:材料化学;赵朗,副研究员; Tel:0431-85262054; E-mail:zhaolang@ciac.ac.cn; 研究方向:磁性材料的合成及性能
  • 基金项目:

    国家自然科学基金项目(21201160);黑龙江大学功能无机材料化学教育部重点实验室开放基金 (21201160)

摘要: 通过原位反应合成法成功合成了一种新型水溶性的磁性荧光复合纳米粒子Fe3O4@SiO2@ZrO2:Tb3+,并通过扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)、红外光谱仪(FT-IR)、磁性测试仪和荧光(PL)光谱对其形貌、尺寸、相组成、磁性和荧光性能进行了表征。结果表明,核(Fe3O4@SiO2)壳(ZrO2:Tb3+)结构组成的磁性荧光复合纳米粒子具有超顺磁性,其饱和磁化强度达到36 emu/g,并且在494 nm(5D47F6)、549 nm(5D47F5)、587 nm(5D47F4)和625 nm(5D47F3)处具有4个Tb3+特有的荧光发射光谱带峰值。磁性荧光双功能的复合纳米粒子在生物医学领域具有潜在的应用价值。

English

  • 
    1. [1] Gong X Q,Zhang Q,Cui Y,et al. A Facile Method to Prepare High-Performance Magnetic and Fluorescent Bifunctional Nanocomposites and Their Preliminary Application in Biomolecule Detection[J]. J Mater Chem B,2013,1(15):2098-2106.[1] Gong X Q,Zhang Q,Cui Y,et al. A Facile Method to Prepare High-Performance Magnetic and Fluorescent Bifunctional Nanocomposites and Their Preliminary Application in Biomolecule Detection[J]. J Mater Chem B,2013,1(15):2098-2106.

    2. [2] Lu Y J,He B C,Shen J,et al. Multifunctional Magnetic and Fluorescent Core-Shell Nanoparticles for Bioimaging[J]. Nanoscale,2015,7(5):1606-1609.[2] Lu Y J,He B C,Shen J,et al. Multifunctional Magnetic and Fluorescent Core-Shell Nanoparticles for Bioimaging[J]. Nanoscale,2015,7(5):1606-1609.

    3. [3] Yu S,Gao X,Jing H,et al. Fabrication and Characterization of Novel Magnetic/Luminescent Multifunctional Nanocomposites for Controlled Drug Release[J]. Cryst Eng Comm,2014,16(29):6645-6653.[3] Yu S,Gao X,Jing H,et al. Fabrication and Characterization of Novel Magnetic/Luminescent Multifunctional Nanocomposites for Controlled Drug Release[J]. Cryst Eng Comm,2014,16(29):6645-6653.

    4. [4] Hou Y,Yin Z,Xin H,et al. Fe3O4 Modified Up-Conversion Luminescent Nanocrystals for Biological Applications[J]. Chinese J Chem,2012,30(12):2774-2778.[4] Hou Y,Yin Z,Xin H,et al. Fe3O4 Modified Up-Conversion Luminescent Nanocrystals for Biological Applications[J]. Chinese J Chem,2012,30(12):2774-2778.

    5. [5] Wang Z,Ma X,Zong S,et al. Preparation of a Magnetofluorescent Nano-Hermometer and Its Targeted Temperature Sensing Applications in Living Cells[J]. Talanta,2015,131:259-265.[5] Wang Z,Ma X,Zong S,et al. Preparation of a Magnetofluorescent Nano-Hermometer and Its Targeted Temperature Sensing Applications in Living Cells[J]. Talanta,2015,131:259-265.

    6. [6] Zhou X,Ma Q,Dong X,et al. Flexible Janus Nanofibers:A Feasible Route to Realize Simultaneously Tuned Magnetism and Enhanced Color-Tunable Luminescence Bifunctionality[J]. RSC Adv,2015,5(45):35948-35957.[6] Zhou X,Ma Q,Dong X,et al. Flexible Janus Nanofibers:A Feasible Route to Realize Simultaneously Tuned Magnetism and Enhanced Color-Tunable Luminescence Bifunctionality[J]. RSC Adv,2015,5(45):35948-35957.

    7. [7] Wang W,Zou M,Chen K. Novel Fe3O4@YPO4:Re(Re=Tb,Eu) Multifunctional Magnetic-Fluorescent Hybrid Spheres for Biomedical Applications[J]. Chem Commun,2010,46(28):5100-5102.[7] Wang W,Zou M,Chen K. Novel Fe3O4@YPO4:Re(Re=Tb,Eu) Multifunctional Magnetic-Fluorescent Hybrid Spheres for Biomedical Applications[J]. Chem Commun,2010,46(28):5100-5102.

    8. [8] Yan K,Li H,Li P,et al. Self-assembled Magnetic Fluorescent Polymeric Micelles for Magnetic Resonance and Optical Imaging[J]. Biomaterials,2014,35(1):344-355.[8] Yan K,Li H,Li P,et al. Self-assembled Magnetic Fluorescent Polymeric Micelles for Magnetic Resonance and Optical Imaging[J]. Biomaterials,2014,35(1):344-355.

    9. [9] Huang L,Zhang Y,Liu H,et al. Synthesis and Properties of Magnetic Fluorescent Bi-Functional Graphene Oxide-Based Nanocomposites[J]. New J Chem,2014,38(12):5817-5824.[9] Huang L,Zhang Y,Liu H,et al. Synthesis and Properties of Magnetic Fluorescent Bi-Functional Graphene Oxide-Based Nanocomposites[J]. New J Chem,2014,38(12):5817-5824.

    10. [10] Kacenka M,Kaman O,Kikerlová S,et al. Fluorescent Magnetic Nanoparticles for Cell Labeling:Flux Synthesis of Manganite Particles and Novel Functionalization of Silica Shell[J]. J Colloid Interface Sci,2015,447:97-106.[10] Kacenka M,Kaman O,Kikerlová S,et al. Fluorescent Magnetic Nanoparticles for Cell Labeling:Flux Synthesis of Manganite Particles and Novel Functionalization of Silica Shell[J]. J Colloid Interface Sci,2015,447:97-106.

    11. [11] Shi D,Sadat M E,Dunn A W,et al. Photo-Fluorescent and Magnetic Properties of Iron Oxide Nanoparticles for Biomedical Applications[J]. Nanoscale,2015,7(18):8209-8232.[11] Shi D,Sadat M E,Dunn A W,et al. Photo-Fluorescent and Magnetic Properties of Iron Oxide Nanoparticles for Biomedical Applications[J]. Nanoscale,2015,7(18):8209-8232.

    12. [12] Hu Y,Qian H,Guo C,et al. Decoration of ZnO Nanocrystals on the Surface of Shuttle-Shaped Mn2O3 and Its Magnetic-Optical Properties[J]. Cryst Eng Comm,2010,12(10):2687-2690.[12] Hu Y,Qian H,Guo C,et al. Decoration of ZnO Nanocrystals on the Surface of Shuttle-Shaped Mn2O3 and Its Magnetic-Optical Properties[J]. Cryst Eng Comm,2010,12(10):2687-2690.

    13. [13] Ge J,Hu Y,Biasini M,et al. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters[J]. Angew Chem Int Ed,2007,46(23):4342-4345.[13] Ge J,Hu Y,Biasini M,et al. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters[J]. Angew Chem Int Ed,2007,46(23):4342-4345.

    14. [14] Shen L H,Bao J F,Wang D,et al. One-Step Synthesis of Monodisperse, Water-Soluble Ultra-Small Fe3O4 Nanoparticles for Potential Bio-Application[J]. Nanoscale,2013,5(5):2133-2141.[14] Shen L H,Bao J F,Wang D,et al. One-Step Synthesis of Monodisperse, Water-Soluble Ultra-Small Fe3O4 Nanoparticles for Potential Bio-Application[J]. Nanoscale,2013,5(5):2133-2141.

    15. [15] Hwang D W,Song I C,Lee D S,et al. Smart Magnetic Fluorescent Nanoparticle Imaging Probes to Monitor MicroRNAs[J]. Small,2010,6(1):81-88.[15] Hwang D W,Song I C,Lee D S,et al. Smart Magnetic Fluorescent Nanoparticle Imaging Probes to Monitor MicroRNAs[J]. Small,2010,6(1):81-88.

    16. [16] Jing P,Wang Q,Liu B,et al. Controlled Fabrication of Bi-Functional Fe3O4@SiO2@Gd2O3:Yb,Er Nanoparticles and Their Magnetic, Up-Conversion Luminescent Properties[J]. RSC Adv,2014,4(84):44575-44582.[16] Jing P,Wang Q,Liu B,et al. Controlled Fabrication of Bi-Functional Fe3O4@SiO2@Gd2O3:Yb,Er Nanoparticles and Their Magnetic, Up-Conversion Luminescent Properties[J]. RSC Adv,2014,4(84):44575-44582.

    17. [17] Tang H,Zhou C,Wu R,et al. The Enhanced Fluorescence Properties & Colloid Stability of Aqueous CdSe/ZnS QDs Modified with N-Alkylated Poly(ethyleneimine)[J]. New J Chem,2015,39(6):4334-4342.[17] Tang H,Zhou C,Wu R,et al. The Enhanced Fluorescence Properties & Colloid Stability of Aqueous CdSe/ZnS QDs Modified with N-Alkylated Poly(ethyleneimine)[J]. New J Chem,2015,39(6):4334-4342.

    18. [18] Li C L,Huang B R,Chang J Y,et al. Bifunctional Superparamagnetic-Luminescent Core-Shell-Satellite Structured Microspheres:Preparation, Characterization, and Magnetodisplay Application[J]. J Mater Chem C,2015,3(18):4603-4615.[18] Li C L,Huang B R,Chang J Y,et al. Bifunctional Superparamagnetic-Luminescent Core-Shell-Satellite Structured Microspheres:Preparation, Characterization, and Magnetodisplay Application[J]. J Mater Chem C,2015,3(18):4603-4615.

    19. [19] Lv X,Li Y,Yan T,et al. An Electrochemiluminescent Immunosensor Based on CdS-Fe3O4 Nanocomposite Electrodes for the Detection of Ochratoxin A[J]. New J Chem,2015,39(6):4259-4264.[19] Lv X,Li Y,Yan T,et al. An Electrochemiluminescent Immunosensor Based on CdS-Fe3O4 Nanocomposite Electrodes for the Detection of Ochratoxin A[J]. New J Chem,2015,39(6):4259-4264.

    20. [20] Yen S K,Jańczewski D,Lakshmi J L,et al. Design and Synthesis of Polymer-Functionalized NIR Fluorescent Dyes-Magnetic Nanoparticles for Bioimaging[J]. ACS Nano,2013,7(8):6796-6805.[20] Yen S K,Jańczewski D,Lakshmi J L,et al. Design and Synthesis of Polymer-Functionalized NIR Fluorescent Dyes-Magnetic Nanoparticles for Bioimaging[J]. ACS Nano,2013,7(8):6796-6805.

    21. [21] Zhang Y,Gong S W Y,Jin L,et al. Magnetic Nanocomposites of Fe3O4/SiO2-FITC with pH-Dependent Fluorescence Emission[J]. Chinese Chem Lett,2009,20(8):969-972.[21] Zhang Y,Gong S W Y,Jin L,et al. Magnetic Nanocomposites of Fe3O4/SiO2-FITC with pH-Dependent Fluorescence Emission[J]. Chinese Chem Lett,2009,20(8):969-972.

    22. [22] Singh N S,Hrishikesh K,Lina P,et al. A Multifunctional Biphasic Suspension of Mesoporous Silica Encapsulated with YVO4:Eu3+ and Fe3O4 Nanoparticles:Synergistic Effect towards Cancer Therapy and Imaging[J]. Nanotechnology,2013,24(6):065101.[22] Singh N S,Hrishikesh K,Lina P,et al. A Multifunctional Biphasic Suspension of Mesoporous Silica Encapsulated with YVO4:Eu3+ and Fe3O4 Nanoparticles:Synergistic Effect towards Cancer Therapy and Imaging[J]. Nanotechnology,2013,24(6):065101.

    23. [23] Zhou L,Gu Z,Liu X,et al. Size-Tunable Synthesis of Lanthanide-Doped Gd2O3 Nanoparticles and Their Applications for Optical and Magnetic Resonance Imaging[J]. J Mater Chem,2012,22(3):966-974.[23] Zhou L,Gu Z,Liu X,et al. Size-Tunable Synthesis of Lanthanide-Doped Gd2O3 Nanoparticles and Their Applications for Optical and Magnetic Resonance Imaging[J]. J Mater Chem,2012,22(3):966-974.

    24. [24] Zhao P,Zhu Y,Yang X,et al. Facile Synthesis of Upconversion Luminescent Mesoporous Y2O3:Er Microspheres and Metal Enhancement Using Gold Nanoparticles[J]. RSC Adv,2012,2(28):10592-10597.[24] Zhao P,Zhu Y,Yang X,et al. Facile Synthesis of Upconversion Luminescent Mesoporous Y2O3:Er Microspheres and Metal Enhancement Using Gold Nanoparticles[J]. RSC Adv,2012,2(28):10592-10597.

    25. [25] Zhai X,Liu S,Liu X,et al. Sub-10 nm BaYF5:Yb3+,Er3+ Core-Shell Nanoparticles with Intense 1.53 μm Fluorescence for Polymer-Based Waveguide Amplifiers[J]. J Mater Chem C,2013,1(7):1525-1530.[25] Zhai X,Liu S,Liu X,et al. Sub-10 nm BaYF5:Yb3+,Er3+ Core-Shell Nanoparticles with Intense 1.53 μm Fluorescence for Polymer-Based Waveguide Amplifiers[J]. J Mater Chem C,2013,1(7):1525-1530.

    26. [26] Chen F,Chen M,Yang C,et al. Terbium-Doped Gadolinium Oxide Nanoparticles Prepared by Laser Ablation in Liquid for Use as a Fluorescence and Magnetic Resonance Imaging Dual-Modal Contrast Agent[J]. Phys Chem Chem Phys,2015,17(2):1189-1196.[26] Chen F,Chen M,Yang C,et al. Terbium-Doped Gadolinium Oxide Nanoparticles Prepared by Laser Ablation in Liquid for Use as a Fluorescence and Magnetic Resonance Imaging Dual-Modal Contrast Agent[J]. Phys Chem Chem Phys,2015,17(2):1189-1196.

    27. [27] Duan N,Zhang H,Nie Y,et al. Fluorescence Resonance Energy Transfer-Based Aptamer Biosensors for Bisphenol A Using lanthanide-doped KGdF4 nanoparticles[J]. Anal Methods,2015,7(12):5186-5192.[27] Duan N,Zhang H,Nie Y,et al. Fluorescence Resonance Energy Transfer-Based Aptamer Biosensors for Bisphenol A Using lanthanide-doped KGdF4 nanoparticles[J]. Anal Methods,2015,7(12):5186-5192.

    28. [28] Sato K,Abe H,Ohara S. Selective Growth of Monoclinic and Tetragonal Zirconia Nanocrystals[J]. J Am Chem Soc,2010,132(8):2538-2539.[28] Sato K,Abe H,Ohara S. Selective Growth of Monoclinic and Tetragonal Zirconia Nanocrystals[J]. J Am Chem Soc,2010,132(8):2538-2539.

    29. [29] Joo J,Yu T,Kim Y W,et al. Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals[J]. J Am Chem Soc,2003,125(21):6553-6557.[29] Joo J,Yu T,Kim Y W,et al. Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals[J]. J Am Chem Soc,2003,125(21):6553-6557.

    30. [30] Ninjbadgar T,Garnweitner G,Brger A,et al. Synthesis of Luminescent ZrO2:Eu3+ Nanoparticles and Their Holographic Sub-Micrometer Patterning in Polymer Composites[J]. Adv Funct Mater,2009,19(11):1819-1825.[30] Ninjbadgar T,Garnweitner G,Brger A,et al. Synthesis of Luminescent ZrO2:Eu3+ Nanoparticles and Their Holographic Sub-Micrometer Patterning in Polymer Composites[J]. Adv Funct Mater,2009,19(11):1819-1825.

    31. [31] Liu Y,Zhou S,Tu D,et al. Amine-Functionalized Lanthanide-Doped Zirconia Nanoparticles: Optical Spectroscopy, Time-Resolved Fluorescence Resonance Energy Transfer Biodetection, and Targeted Imaging[J]. J Am Chem Soc,2012,134(36):15083-15090.[31] Liu Y,Zhou S,Tu D,et al. Amine-Functionalized Lanthanide-Doped Zirconia Nanoparticles: Optical Spectroscopy, Time-Resolved Fluorescence Resonance Energy Transfer Biodetection, and Targeted Imaging[J]. J Am Chem Soc,2012,134(36):15083-15090.

    32. [32] Tong L,Shi J,Liu D,et al. Luminescent and Magnetic Properties of Fe3O4@SiO2@Y2O3:Eu3+ Composites with Core Shell Structure[J]. J Phys Chem C,2012,116(12):7153-7157.[32] Tong L,Shi J,Liu D,et al. Luminescent and Magnetic Properties of Fe3O4@SiO2@Y2O3:Eu3+ Composites with Core Shell Structure[J]. J Phys Chem C,2012,116(12):7153-7157.

    33. [33] Yi D K,Lee S S,Papaefthymiou G C,et al. Nanoparticle Architectures Templated by SiO2/Fe2O3 Nanocomposites[J]. Chem Mater,2006,18(3):614-619.[33] Yi D K,Lee S S,Papaefthymiou G C,et al. Nanoparticle Architectures Templated by SiO2/Fe2O3 Nanocomposites[J]. Chem Mater,2006,18(3):614-619.

    34. [34] Deng Y,Qi D,Deng C,et al. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins[J]. J Am Chem Soc,2008,130(1):28-29.[34] Deng Y,Qi D,Deng C,et al. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins[J]. J Am Chem Soc,2008,130(1):28-29.

    35. [35] Sun P,Zhang H,Liu C,et al. Preparation and Characterization of Fe3O4/CdTe Magnetic/Fluorescent Nanocomposites and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells[J]. Langmuir,2010,26(2):1278-1284.[35] Sun P,Zhang H,Liu C,et al. Preparation and Characterization of Fe3O4/CdTe Magnetic/Fluorescent Nanocomposites and Their Applications in Immunolabeling and Fluorescent Imaging of Cancer Cells[J]. Langmuir,2010,26(2):1278-1284.

    36. [36] Qin S,Cai W,Tang X,et al. Sensitively Monitoring Photodegradation Process of Organic Dye Molecules by Surface-Enhanced Raman Spectroscopy Based on Fe3O4@SiO2@TiO2@Ag Particle[J]. Analyst,2014,139(21):5509-5515.[36] Qin S,Cai W,Tang X,et al. Sensitively Monitoring Photodegradation Process of Organic Dye Molecules by Surface-Enhanced Raman Spectroscopy Based on Fe3O4@SiO2@TiO2@Ag Particle[J]. Analyst,2014,139(21):5509-5515.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  495
  • HTML全文浏览量:  49
文章相关
  • 收稿日期:  2015-11-10
  • 网络出版日期:  2015-12-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章