功能化磁性纳米粒子联合质谱技术用于金属硫蛋白的富集及鉴定研究

何新宇 王冰 周洋洋 卞晓军 颜娟

引用本文: 何新宇,  王冰,  周洋洋,  卞晓军,  颜娟. 功能化磁性纳米粒子联合质谱技术用于金属硫蛋白的富集及鉴定研究[J]. 分析化学, 2018, 46(7): 1069-1076. doi: 10.11895/j.issn.0253-3820.171285 shu
Citation:  HE Xin-Yu,  WANG Bing,  ZHOU Yang-Yang,  BIAN Xiao-Jun,  YAN Juan. Enrichment and Identification of Metallothionein by Functionalized Nano-Magnetic Particles and Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1069-1076. doi: 10.11895/j.issn.0253-3820.171285 shu

功能化磁性纳米粒子联合质谱技术用于金属硫蛋白的富集及鉴定研究

  • 基金项目:

    本文系国家自然科学基金项目(Nos.21775102,21405167)和海洋工程国家重点实验室(上海交通大学)开放课题项目(No.1609)资助

摘要: 金属硫蛋白(Metallothionein,MT)是一种具有结合金属能力和高诱导特性的低分子量蛋白质,因此常被作为一种重要的生物标志物用于水环境重金属污染评估。传统的金属硫蛋白富集检测方法耗时较长,操作复杂。本研究制备了金包覆四氧化三铁的核壳纳米粒子(Fe3O4@Au NPs),具有磁场的快速响应和特殊的光学特性的优点,并且可利用Au-S的强亲和力实现纳米粒子对金属硫蛋白的快速富集,进一步将纯化的蛋白质通过基质辅助激光解吸电离飞行时间质谱(MALDI-TOF/MS)进行分析检测。结果表明,Fe3O4@Au纳米粒子可以直接从复杂的溶液中富集MT,采用MALDI-TOF/MS鉴定分析,检出限达10 fg/mL。

English

    1. [1]

      Calvo J, Jung H, Meloni G. IUBMB Life, 2017, 69(4):236-245

    2. [2]

      Merlos Rodrigo M A, Molina-López J, Jimenez Jimenez A M, Del Pozo P A, Eckschlager T, Adam P, Zitka O, Richtera L, Adam V. Int. J. Mol. Sci., 2017, 18(3):610-620

    3. [3]

      Balbi T, Fabbri R, Montagna M, Camisassi G, Canesi L. Mar. Pollut. Bull., 2017, 116(1):348-356

    4. [4]

      Wu S M, Lin H C, Yang W L. Aquat. Toxicol., 2008, 87(4):296-302

    5. [5]

      Santiago-Rivas S, Moreda-Piñeiro A, Bermejo-Barrera A, Bermejo-Barrera P. Talanta, 2007, 71(4):1580-1586

    6. [6]

      Smith C L,Stauber J L, Wilson M R, Jolley D F. Anal. Bioanal. Chem., 2014, 406(1):305-315

    7. [7]

      Tenório-Daussat C L, Resende M C M, Ziolli R L, Hauser-Davis R A, Schaumloffel D, Saint'Pierre T D. Talanta, 2014, 120:491-497

    8. [8]

      Mehus A A, Muhonen W W, Garrett S H, Somji S, Sens D A, Shabb J B. Mol. Cell. Proteomics, 2014, 13(4):1020-1033

    9. [9]

      Whitehouse C M, Dreyer R N, Yamashita M,Fenn J B. Science, 1989, 246(4926):64-71

    10. [10]

      Gan J, Ben-Nissan G, Arkind G, Tarnavsky M, Trudeau D, Noda Garcia L, S Tawfik D, Sharon M. Anal. Chem., 2017, 89(8):4398-4404

    11. [11]

      Zhang G, Annan R S, Carr S A, Neubert T A. Carr. Protocol. Mol. Biol., 2014:10.21.1-10.21.30

    12. [12]

      Wei H, Zhang X, Tian X,Wu G. J. Pharm. Pharmacol., 2016, 131:444-453

    13. [13]

      Güray M Z, Zheng S, Doucette A A. J. Proteome Res., 2017, 16(2):889-897

    14. [14]

      Jin Y, Wei L,Cai W, Lin Z, Z Wu, Y Peng, Kohmoto T, Moss R L, Ge Y. Anal. Chem., 2017, 89(9):4922-4930

    15. [15]

      Seong Y, Yoo Y S, Akter H, Kang M J. J. Chromatogr. B, 2017, 1060:272-280

    16. [16]

      Wen A M, Steinmetz N F. Chem. Soc. Rev., 2016, 45(15):4074-4126

    17. [17]

      Zhu D, Song P, Shen J, Su S, Chao J,Aldalbahi A, Zhou Z, Song S, Fan C, Zuo X, Tian Y, Wang L, Pei H. Anal. Chem., 2016, 88(9):4949-4954

    18. [18]

      Qi L, Xiao M, Wang X, Wang C, Wang L, Song S, Qu X, Li L, Shi J, Pei, H. Anal. Chem., 2017, 89(18):9850-9856

    19. [19]

      Yang X, Li J, Pei H, Li D, Zhao Y, Gao J, Lu J, Shi J, Fan C,Huang Q. Small, 2013, 9(17):2844-2849

    20. [20]

      Qu X, Zhu D, Yao G, Su S, Chao J, Liu H, Zuo X, Wang L, Shi J, Wang L, Huang W. Angew. Chem. Int. Edit., 2017, 56(7):1855-1858

    21. [21]

      Qu X, Zhang H, Chen H, Aldalbahi A, Li L, Tian Y, Weitz D, Pei H. Anal. Chem., 2017, 89 (6):3468-3473

    22. [22]

      Chen Q, Liu H, Lee W, Sun Y, Zhu D, Pei H, Fan C, Fan X. Lab Chip, 2013, 13(17):3351-3354

    23. [23]

      Pei H, Zuo X, Zhu D, Huang Q, Fan C. Acc. Chem. Res., 2013, 47(2):550-559

    24. [24]

      Xiao M, Lai W, Wang X, Qu X, Li L, Pei H. MPS, 2018, 2(1):5137-5153

    25. [25]

      Pei H, Zuo X, Pan D, Shi J, Huang Q, Fan C. NPG Asia Mater., 2013, 5(6):1-9

    26. [26]

      Xu Z, Hou Y, Sun S. J. Am. Chem. Soc., 2007, 129(28):8698-8699

    27. [27]

      Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y. ACS Nano, 2007, 1(4):293-298

    28. [28]

      Wang D, Li Y. J. Am. Chem. Soc., 2010, 132(18):6280-6281

    29. [29]

      Jiang H, Zeng X, He N, Deng Y, Lu G, Li K. J. Nanosci. Nanotechnol., 2013, 13(3):1617-1625

    30. [30]

      Qi D, Zhang H, Tang J, Deng C, Zhang X. J. Phys. Chem. C, 2010, 114(20):9221-9226

    31. [31]

      Li S, Liu H, Liu L, Tian L, He N. Anal. Biochem., 2010, 405(1):141-143

    32. [32]

      Zhou X, Xu W, Wang Y, Kuang Q, Shi Y, Zhong L, Zhang Q. J. Phys. Chem. C, 2010, 114(46):19607-19613

    33. [33]

      Jin Y, Jia C, Huang S W, O'Donnell M, Gao X. Nat. Commun., 2010, 1(4):1-8

    34. [34]

      Kayal S, Ramanujan R V. J. Nanosci. Nanotechnol., 2010, 10(9):5527-5539

    35. [35]

      Zhou H, Lee J, Park T J, Lee S J, Park J Y, Lee J. Sensor Actuators B, 2012, 163(1):224-232

    36. [36]

      Liang C H, Wang C C, Lin Y C, Chen C H, Wong C H, Wu C Y. Anal. Chem., 2009, 81(18):7750-7756

    37. [37]

      Lo C K, Xiao D, Choi M M F. J. Mater. Chem., 2007, 17(23):2418-2427

    38. [38]

      Xuan S, Wang Y X J, Yu J C, Cham-Fai Leung K. Chem. Mater., 2009, 21(21):5079-5087

    39. [39]

      Sahoo Y, Goodarzi A, Swihart M T, Ohulchanskyy T Y, Kaur N, Furlani E P, Prasad P N. J. Phys. Chem. B, 2005, 109(9):3879-3885

    40. [40]

      Rǎcuciu M, Creangǎ D E, Airinei A. Eur. Phys. J. A, 2006, 21(2):117-121

    41. [41]

      Lan Q, Liu C, Yang F, Liu S, Xu J, Sun D. J. Colloid Interface Sci., 2007, 310(1):260-269

    42. [42]

      Nigam S, Barick K C, Bahadur D. J. Magn. Magn. Mater., 2011, 323(2):237-243

    43. [43]

      JCPDS-International Center for Diffraction Data, PCPDFWIN v. 2.02, 04-0784

    44. [44]

      Mandal M, Kundu S, Ghosh S K, Panigrahi S, Sau T K, Yusuf S M, Pal T. J. Colloid Interface Sci., 2005, 286(1):187-194

    45. [45]

      Mikhaylova M, Kim D K, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M. Langmuir, 2004, 20(6):2472-2477

    46. [46]

      Gelamo E L, Silva C, Imasato H, Tabak M. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2002, 1594(1):84-99

    47. [47]

      Dertinger S K, Jiang X, Li Z, Murthy V N, Whitesides G M. Proc. Natl. Acad. Sci. USA, 2002, 99(20):12542-12547

    48. [48]

      Thornalley P J, Vašák M. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1985, 827(1):36-44

    49. [49]

      Wang X X, Wu Q, Shan Z, Huang Q M. Biosens. Bioelectron., 2011, 26(8):3614-3619

    50. [50]

      Alkilany A M, Nagaria P K, Hexel C R, Shaw T J, Murphy C J, Wyatt M D. Small, 2009, 5(6):701-708

    51. [51]

      Toyama M, Yamashita M, Hirayama N, Murooka Y. J. Biochem., 2002, 132(2):217-221

    52. [52]

      Adam V, Fabrik I, Kizek R, Eckschlager T, Stiborova M, Trnkova L. Trends Anal. Chem., 2010, 29(5):409-418

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  393
  • HTML全文浏览量:  40
文章相关
  • 收稿日期:  2017-10-01
  • 修回日期:  2018-02-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章