Syntheses, Structures of Three Zn(Ⅱ) Coordination Polymers Based on Flexible 4-Substituted Bis(1, 2, 4-triazole) Ligand

Yan-Fen PENG Tian-Bao LIU Qiu-Yan WU Guo-Jian YAO Dong-Dong XU

Citation:  PENG Yan-Fen, LIU Tian-Bao, WU Qiu-Yan, YAO Guo-Jian, XU Dong-Dong. Syntheses, Structures of Three Zn(Ⅱ) Coordination Polymers Based on Flexible 4-Substituted Bis(1, 2, 4-triazole) Ligand[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(12): 2245-2253. doi: 10.11862/CJIC.2018.280 shu

三个基于柔性4-取代双三唑配体锌配位聚合物的合成、晶体结构

    通讯作者: 彭艳芬, pengyanfen1978@126.com
  • 基金项目:

    安徽省高校优秀青年人才支持计划重点项目 gxyqZD2016372

    安徽省自然科学基金 KJ2016A512

    国家自然科学基金(No.21271035)、安徽省自然科学基金(No.KJ2016A512)和安徽省高校优秀青年人才支持计划重点项目(No.gxyqZD2016372)资助

    国家自然科学基金 21271035

摘要: 以1,2-二(4H-1,2,4-三唑)乙烷(btre)和3个二元羧酸1,3-金刚烷二酸(H2adc)、对苯二甲酸(1,4-H2bdc)和邻苯二甲酸(1,2-H2bdc)为配体,在室温下合成了3个锌配位聚合物{[Zn(μ2-btre)(μ2-adc)]H2O}n1·H2O)、[Zn2μ2-btre)(μ2-1,4-bdc)2(H2O)2]n2)和[Zn(μ2-btre)(μ2-1,2-bdc)]n3)。测试了3个配合物的晶体结构,并用红外光谱、元素分析和粉末衍射对其进行表征。晶体结构测试表明,1为2D(4,4)网格结构,π-π作用将相邻的2D网格连接成3D结构。配合物23分别是3D和2D(4,4)网格结构。另外,研究了3个配合物的热稳定性和室温下的固体荧光。

English

  • In recent years, the synthesis and characteriza-tion of coordination polymers (CPs) or metal-organic frameworks (MOFs) have attracted widely attention not only due to their structural diversity but also many physical properties with potential applications in many areas, such as ion exchange or absorption[1-2], cation/small molecule solvent recognition[3-5], catalysis[6-7], gas absorption, storage and separation[8-9], luminescence[10]. Although more and more coordination polymers have been synthesized, the controlled synthesis of complexes is still a great challenge, since many factors affect the structures and properties of coor-dination polymers. Of all factors, a judicious selection of organic bridging ligands is very fruitful in the crystal engineering[11-12]. Because of the diversity of the coordination modes and high-connected nods, polycar-boxylate ligands are used to construct MOFs or CPs[13-16]. On the other hand, N-donor ligands also play an important role in synthesizing CPs or MOFs. More and more new flexible or rigid N-donor ligands have been synthesized and used in the synthesis of metal-organic frameworks. Especially, in recent years, the 4-substituted-bis(1, 2, 4-triazole) derivatives ligands have attracted much more attention of many researchers. We have synthesized some coordination polymers based on rigid 4-substituted-bis(1, 2, 4-triazole) ligand 1, 4-bis-(1, 2, 4-triazol-4-yl)benzene (btx)[17-18], flexible ligand 1, 4-bis(1, 2, 4-triazol-4-ylmethyl)benzene (btrb)[19] and 1, 2-bis(1, 2, 4-triazol-4-yl)ethane (btre)[20-21]. With four possible coordination sites, btre has different coor-dination modes, such as bis-monodentate, tridentate and quadridentate mode. Ligand btre can adopt cis or trans conformation according to different coordination environments or different metal ions because of its flexibility. Meanwhile, the weak supramolecular inter-actions such as hydrogen bond, π-π stacking are as important as coordination bond in crystal engineering. These covalent interactions can improve the stability of the network and increase dimensionality[22-24].

    Herein, three new coordination polymers {[Zn(μ2-btre)(μ2-adc)]·H2O}n (1·H2O), [Zn2(μ2-btre)(μ2-1, 4-bdc)2(H2O)2]n (2) and [Zn(μ2-btre)(μ2-1, 2-bdc)]n (3) were synthesized based on three kinds of dicarboxy-late (btre=1, 2-bis(1, 2, 4-triazol-4-yl)ethane, adc=1, 3-adamantanedicarboxylate, 1, 4-bdc=1, 4-benzenedicar-boxylate, 1, 2-bdc=1, 2-benzenedicarboxylate) (Scheme 1). 1 and 3 show two-dimensional (4, 4) networks. 2 exhibits 3D network. The thermal stabilities of complexs 1~3 were investigated.

    Scheme 1

    Scheme 1.  Structures of ligands H2adc, 1, 4-H2bdc, 1, 2-H2bdc and btre

    Ligand btre was synthesized according to the literature method[25]. All other reagents are of analytical grade and used without further purification. Elemental analyses for C, H and N were performed on a Perkin-Elmer 240C analyzer. The IR spectra were obtained using KBr pellets on a Nicolet iS10 spectrophotometer in the 4000~400 cm-1 region. Powder X-ray diffraction (PXRD) were performed on a D/MAX-3C diffracto-meter with the Cu radiation (λ=0.154 06 nm, U=40 kV, I=40 mA) over the 2θ range of 5°~50° at room temperature. The luminescence measurements were carried out in the solid state at room temperature and the spectra were collected with a Perkin-Elmer LS50B spectrofluorimeter. TGA was carried out using a Thermal Analyst 2100 TA Instrument and SDT 2960 Simultaneous TGA-DTA Instrument in flowing dinitrogen at a heating rate of 10 ℃·min-1.

    1.2.1   Synthesis of {[Zn(μ2-btre)(μ2-adc)]·H2O}n (1·H2O)

    A solution of H2adc (0.2 mmol) in 10 mL of H2O was adjusted to pH=6 with 1.0 mol·L-1 NaOH solution and Zn(NO3)2·6H2O (0.2 mmol) was added with stirring. Then 5 mL methanol solution of btre (0.2 mmol) was added and continuously stirred for 10 min. The mixture solution was filtered and stood for one week to give colorless single crystals of 1·H2O (0.033 g, Yield: 35% based on btre). Anal. Calcd. for C18H24N6O5Zn(%): C, 46.02; H, 5.15; N, 17.89; Found(%): C, 46.05; H, 5.11; N, 17.80. IR (cm-1): 3 434s, 3 113s, 2 937s, 2 906s, 2 855m, 1 578s, 1 458m, 1 383s, 1 308s, 1 207m, 1 201m, 1 075m, 1 031w, 974w, 892w, 810w, 697m, 641s.

    1.2.2   Synthesis of [Zn2(μ2-btre)(μ2-1, 4-bdc)2(H2O)2]n (2)

    The synthesis of 2 was similar with that of 1 using 1, 4-H2bdc (0.2 mmol) in stead of H2adc. Yield:0.045 g, 28.43% based on Zn. Anal. Calcd. for C22H20N6O10Zn2(%): C, 40.08; H, 3.06; N, 12.75; Found(%): C, 40.03; H, 3.10; N, 12.79. IR (cm-1): 3 233s, 3 101s, 1 609s, 1 603s, 1 565m, 1 383s, 1 352s, 1 270s, 1 201 m, 1 144w, 1 075m, 1 081m, 892m, 842s, 748s, 635s, 540m, 489w.

    1.2.3   Synthesis of [Zn(μ2-btre)(μ2-1, 2-bdc)]n (3)

    The synthesis of 3 was similar with that of 1 using 1, 2-H2bdc (0.2 mmol) in stead of H2adc. Yield:0.033 g, 42% yield based on Zn. Anal. Calcd. for C14H12N6O4Zn(%): C, 42.71; H, 3.07; N, 21.35; Found(%): C, 42.73; H, 3.10; N, 21.39. IR (cm-1): 3 436w, 3 109s, 3 012w, 1 627s, 1 530s, 1 390s, 1 360s, 1 214m, 1 087m, 1 032s, 898m, 832m, 771m, 716m, 643s, 582w, 491w.

    1.2.4   X-ray crystallography

    The diffraction data of 1 and 2 were collected on the Xcalibur, Atlas, Gemini, 3 on Rigaku Mercury CCD diffractometer with graphite monochromated Mo (λ=0.071 073 nm for 1 and 2, 0.071 070 nm for 3) radiation. Intensities were collected by the ω scan technique. The structures were solved and refined by the SHELXTL package[26-27]. All non-hydrogen atoms were refined anisotropically and hydrogen atoms were determined with theoretical calculations and refined isotropically. The lattice water of 1·H2O is highly disordered and could not be modeled properly and was removed by the SQUEEZE routine in PLATON[28]. The number of lattice water molecules for 1·H2O was deduced from the TGA and elemental analysis. The parameters of the crystal data collection and refine-ment of 1~3 are given in Tables 1. Selected bond lengths and bond angles of 1~3 are listed in Table 2.

    Table 1

    Table 1.  Crystallographic collection and refinement parameters of 1~3
    下载: 导出CSV
    Complex 1 2 3
    Formula C18H22N6O4Zn C22H20N6O10Zn2 C14H12N6O4Zn
    Formula weight 451.78 659.18 393.67
    T/K 295.31 223.00(10) 293.15
    Crystal system Triclinic Triclinic Monoclinic
    Space group P1 P1 P21
    a / nm 0.663 65(8) 1.033 30(8) 0.699 56(17)
    b / nm 0.967 03(13) 1.161 85(9) 1.210 1(3)
    c / nm 1.507 39(10) 1.164 93(9) 0.925 4(2)
    α/(°) 97.678(8) 65.017(8)
    β/(°) 91.960(7) 77.424(7) 105.009(4)
    γ/(°) 92.400(10) 75.557(7)
    V/ nm3 0.957 10(18) 1.217 52(18) 0.756 6(3)
    F(000) 468 668 400
    Z 2 2 2
    Dc/ (g·cm-3) 1.568 1.798 1.728
    μ/ mm-1 1.322 2.042 1.659
    Reflection collected 7 194 8 821 7 268
    Unique reflection 3 350 (Rint=0.057 9) 4 276 (Rint=0.041 2) 2 644 (Rint=0.022 3)
    Parameter 262 377 227
    Flack parameter -0.005(13)
    GOF on F2 1.016 1.034 0.989
    R1, wR2[I > 2σ(I)] 0.054 5, 0.129 7 0.037 0, 0.079 7 0.021 2, 0.042 9
    R1, wR2(all data) 0.066 9, 0.137 8 0.049 6, 0.085 9 0.023 3, 0.043 9
    (△ρ)max, (△ρ)min/(e·nm-3) 1890, -480 590, -410 350, -240

    Table 2

    Table 2.  Selected bond lengths (nm) and angles (°) for 1~3
    下载: 导出CSV
    Complex 1
    Zn(1)-O(1) 0.195 0(4) Zn(1)-O(3)A 0.201 4(3) Zn(1)-N(1) 0.209 5(4)
    Zn(1)-N(4) 0.202 2(3)
    O(1)-Zn(1)-O(3)A 109.31(15) O(1)-Zn(1)-N(1) 102.58(15) O(1)-Zn(1)-N(4) 124.54(15)
    O(3)A-Zn(1)-N(1) 97.04(14) O(3)A-Zn(1)-N(4) 116.57(16) N(1)-Zn(1)-N(4) 101.04(15)
    Complex 2
    Zn(1)-O(1) 0.191 2(2) Zn(1)-O(3) 0.195 6(2) Zn(1)-O(9) 0.196 6(3)
    Zn(1)-N(1) 0.199 8(3) Zn(2)-O(5) 0.198 7(3) Zn(2)-O(7) 0.194 8(2)
    Zn(2)-O(10) 0.200 3(3) Zn(1)-N(4) 0.200 1(3)
    O(1)-Zn(1)-O(3) 107.91(1) O(1)-Zn(1)-O(9) 118.56(1) O(1)-Zn(1)-N(1) 117.11(1)
    O(3)-Zn(1)-O(9) 105.10(1) O(3)-Zn(1)-N(1) 105.96(1) O(9)-Zn(1)-N(1) 100.97(1)
    O(5)-Zn(2)-O(10) 97.58(1) O(5)-Zn(2)-N(4) 122.88(1) O(7)-Zn(2)-O(5) 105.27(1)
    O(7)-Zn(2)-O(10) 108.28(1) O(7)-Zn(2)-N(4) 121.18(1) O(10)-Zn(2)-N(4) 97.46(1)
    Complex 3
    Zn(1)-O(1) 0.193 5(2) Zn(1)-O(4)A 0.195 1(2) Zn(1)-N(1) 0.202 3(3)
    Zn(1)-N(4)B 0.203 5(3)
    O(1)-Zn(1)-O(4)A 120.47(11) O(1)-Zn(1)-N(1) 103.70(11) O(4)A-Zn(1)-N(1) 116.18(10)
    O(1)-Zn(1)-N(4)B 102.12(11) O(4)A-Zn(1)-N(4)B 106.92(11) N(1)-Zn(1)-N(4)B 105.75(11)
      Symmetry codes: A: x, -1+y, z; B: x, 1+y, z; C -x, 2-y, 2-z; D: -x, 2-y, 1-z for 1; A: 1-x, -y, 1-z; B: 2-x, 1-y, 1-z; C: 2-x, -y, 1-z; D: 1-x, -y, -z for 2; A: 2-x, y+1/2, -z+1; B: 2-x, y+1/2, -z; C: 2-x, y-1/2, -z+1; D: 2-x, y-1/2, -z for 3.

    CCDC: 1848223, 1; 1848224, 2; 1848225, 3.

    2.1.1   Crystal structure of {[Zn(μ2-btre)(μ2-adc)]·H2O}n (1·H2O)

    Single-crystal X-ray analysis shows that 1 crys-tallizes in the triclinic system with P1 space group. The asymmetric unit of 1 consists of one Zn(Ⅱ) ion, two half μ2-btre ligands and one μ2-adc ligand. Two carboxyl oxygen atoms (O(1), O(3)A) from two μ2-adc ligands, two nitrogen atoms (N(1), N(4)) from two μ2-btre ligands are coordinated to Zn(Ⅱ) forming a distorted tetrahedron geometry [ZnO2N2]. The bond lengths of Zn-O/N are in the range of 0.195 0~0.209 5 nm (Fig. 1a). In 1, ligand μ2-adc shows bis-monodentate coordination mode and connects two Zn(Ⅱ) with the distance of 0.960 3 nm. Ligand btre adopts trans-conformation and coordinated to two Zn(Ⅱ) with the Zn…Zn distance of 1.186 02 nm. Each Zn(Ⅱ) links two adc and two btre ligands and expands to a waved 2D (4, 4) network (Fig. 1b). The adjacent 2D (4, 4) nets were connected to give a 3D net by strong π-π interactions between triazole rings[29]. The centroid-to-centroid, perpendicular distances and dihedral angle between two Cg(3) are 0.375 1 nm, 0.361 3 nm and 0°, where Cg(3) represents the triazole ring N1-N2-C2-N3-C1. The centroid-to-centroid, perpendicular distances and dihedral angle between two Cg(4) are 0.361 6 nm, 0.339 42 nm and 0°, where Cg(4) represents the triazole ring N4-N5-C5-N6-C4. In addition, the p-π interactions are found between C9-(H9B) of adc ligand and Cg(3). The distances of C9 and H9B to centroid of Cg(3) are 0.393 7 nm and 0.299 nm (Fig. 1c).

    Figure 1

    Figure 1.  (a) Coordination environment of 1; (b) 2D (4, 4) network of 1; (c) 3D network of 1

    All H atoms are omitted for clarity; 50% thermal ellipsoids; Symmetry codes: A: x, -1+y, z; B: x, 1+y, z; C:-x, 2-y, 2-z; D:-x, 2-y, 1-z

    2.1.2   Crystal structure of [Zn2(μ2-btre)(μ2-1, 4-bdc)2 (H2O)2]n (2)

    Complex 2 crystallizes in the triclinic system with P1 space group. The asymmetric unit of 2 consists of two Zn(Ⅱ) ions, four half 1, 4-bdc ligands, one btre ligand and two coordinated water molecules. There are two crystallographically independent Zn(Ⅱ) (Zn(1) and Zn(2)) in 2. The Zn(1)/Zn(2) are surro-unded by two carboxyl oxygen atoms (O(1), O(3))/(O(5), O(7)) from two 1, 4-bdc ligands, one nitrogen atom (N(1)/(N(4)) from btre ligand and one coordinated water molecule (O(9)/O(10)) to give a distorted tetrahedron geometry [ZnO3N], respectively (Fig. 2a). The bond lengths of Zn-O/N are in the range of 0.191 2~0.200 3 nm, and the bond angles around Zn(Ⅱ) are in the range of 97.46°~122.88°. Ligand 1, 4-bdc shows bis-monodentate coordination mode and connects two Zn(Ⅱ). Zn(1) atoms and Zn(2) atoms are connected by 1, 4-bdc to form two interwoven zigzag chains with the distances Zn(1)…Zn(1) and Zn(2)…Zn(2) of 1.100 24, 1.101 04 and 0.110 93, 1.090 083 nm, respectively (Fig. 2b). Ligand btre connects Zn(1) and Zn(2) of interwoven zigzag chains in bis-monodentate coordina-tion mode to form a three-dimensional network and the distance of Zn(1)…Zn(2) is 0.613 80 nm (Fig. 2c). Habib and co-worker synthesized 3D network [Zn2(μ2-1, 4-bdc)2(μ4-btre)]n by hydrothermal reaction based on the same ligands and same ion. But, btre ligands show quadridentate, and there is no coordinated water molecule in [Zn2(μ2-1, 4-bdc)2(μ4-btre)]n[30].

    Figure 2

    Figure 2.  (a) Coordination environment of 2; (b) Two zigzag chains of 2; (c) 3D network of 2

    All H atoms are omitted for clarity; 50% thermal ellipsoids; Symmetry codes: A: 1-x, -y, 1-z; B: 2-x, 1-y, 1-z; C: 2-x, -y, 1-z; D: 1-x, -y, -z

    2.1.3   Crystal structure of [Zn(μ2-btre)(μ2-1, 2-bdc)]n (3)

    Single-crystal X-ray analysis shows that 3 crys-tallizes in the monoclinic system with P21 space group. The asymmetric unit of 3 consists of one Zn(Ⅱ) ion, one btre ligand and one 1, 2-bdc ligand. The Zn(1) atom is four-coordinated and surrounded by two oxygen atoms (O(1), O(4)A) from two 1, 2-bdc ligands, two triazole nitrogen atom (N(1), N(4)B) from two btre ligands in a distorted tetrahedron geometry [ZnO2N2]. The bond length of Zn-O/N is in the range of 0.193 5~0.203 5 nm (Fig. 3a). In 3, each btre ligand acts as a gauche-conformation and connects two Zn(Ⅱ) with the distance of 0.808 02 nm. Each 1, 2-bdc ligand adopts bis-monodentate coordination mode and bridges two Zn(Ⅱ) and forms a [Zn(1, 2-bdc)]n left-hand helix with a Zn…Zn distance of 0.739 37 nm (Fig. 3b). Each Zn(Ⅱ) connects two btre and two 1, 2-bdc ligands and expands to a waved 2D (4, 4) network (Fig. 3c).

    Figure 3

    Figure 3.  (a) Coordination environment of 3; (b) Left-hand helix of 3; (c) 2D (4, 4) network of 3

    All H atoms are omitted for clarity; 50% thermal ellipsoids; Symmetry codes: A: 2-x, 1/2+y, 1-z; B: 2-x, 1/2+y, -z; C: 2-x, -1/2+y, 1-z; D: 2-x, -1/2+y, -z

    Ligand btre shows trans-conformation in 1, and gauche-conformation in 2 and 3. The dihedral angle between two triazole rings of btre is 0.00° in 1, 45.713° and 61.370° in 2 and 3. The torsion angles of N3-C3-C3C-N3C/N6-C6-C6D-N6D, N3-C3-C4-N6, N3 -C1-C2-N6 of btre are 180.00°/-180.00°, -54.083° and 53.758° in 1, 2 and 3, respectively. In the three complexes, Zn(Ⅱ) atoms are all four-coordinated and located at center of distorted tetrahedron geometry. The bond lengths of Zn-O/N and bond angles of O-Zn-N, O-Zn-O, N-Zn-N are in the normal range, which are comparable to the values in others zinc(Ⅱ) polymers based on btre ligand[20-21].

    In order to characterize the purity of complexes 1~3, and the as-synthesized samples were measured by X-ray powder diffraction at room temperature. As shown in Fig. 4, the peak position of the measured patterns are in good agreement with the simulated patterns, indicating the purity of the samples. The thermal stabilities of 1~3 were examined by thermo-gravimetric analyses. As shown in Fig. 5, 1 is stable before 134 ℃, and the lattice water lost from 134 to 167 ℃ (Calcd. 3.83%, Obsd. 3.91%). The framework of 1 was thermally stable upon 297 ℃. Then the decomposition happened quickly until 540 ℃. The main residue should be ZnO (Calcd. 17.32%, Obsd. 18.13%). The TG curve of 2 showed that the coor-dinated water lost from 173 to 213 ℃ (Calcd. 5.46%, Obsd. 5.40%). The framework of 2 is very stable from 213 to 400 ℃. Then the weight decreased quickly and did not end until 528 ℃. The main residue should be ZnO (Calcd. 24.69%, Obsd. 25.09%). Before 302 ℃, the weight of 3 decreased very slowly. Then the weight decreased quickly until 800 ℃, The main residue should be ZnO (Calcd. 20.67%, Obsd. 20.92%).

    Figure 4

    Figure 4.  Measured and simulated PXRD patterns of complexes 1~3

    Figure 5

    Figure 5.  TG curves of 1~3

    There is continuous interest in the study of photoluminescence coordination polymers with d10 electronic configuration because of their ability to shift, quench or enhance luminescent emission of organic ligands in coordination polymers. So, the solid state luminescence spectra of 1~3 and btre were investigated at room temperature (Fig. 6). The free btre ligand does not show luminescence at room temperature which is the same as the literature[31]. The btre luminescence is possibly quenched by the thermal intra-ligand rotations around the C-C and C-N bonds[32-33]. Complex 1 exhibits the emission at 442 and 471 nm (λex=370 nm). Complexes 2 and 3 show strong emission band maxima at 436 and 384 nm upon excitation at 320 and 309 nm, respectively. The strong emission of 2 is blue-shift for 9 nm compared with [Zn2(μ2-1, 4-bdc)2(μ4-btre)]n[30]. The free H2adc has no obvious emission at the same condition[34]. The free 1, 4-H2bdc and 1, 2-H2bdc exhibit the emissions at 390 and 375 nm, respectively[35]. Due to the d10 configura-tion, Zn(Ⅱ) ion is difficult to oxidize or reduce, the emissions are neither metal-to-ligand charge transfer (MLCT) nor ligand-to-metal charge transfer (LMCT). The emissions of 1~3 may be attributed to the intra-ligand and ligand-to-ligand charge transition (LLCT)[30, 36].

    Figure 6

    Figure 6.  Solid-state emission spectra of the complexes and btre

    Three zinc(Ⅱ) coordination polymers based on different dicarboxylate ligands and flexible 4-substituted bis(1, 2, 4-triazole) ligand were successfully synthesized and characterized. Complex 1 is a 2D (4, 4) network, and the adjacent 2D networks are connected by strong π-π interactions to form a 3D supramolecular architecture. The structure of 2 and 3 are 3D and 2D (4, 4) network, respectively. Thermo-gravimetric analysis showed that the framework of 2 and 3 have better thermal stability. In addition, the photoluminescence investigation shows that three complexes may have potential application as luminescent materials.

    1. [1]

      Jung O S, Kim Y J, Lee Y A, et al. Inorg. Chem., 2003, 42:844-850 doi: 10.1021/ic025935q

    2. [2]

      Lv X X, Shi L L, Li K, et al. Chem. Commun., 2017, 53:1860-1863 doi: 10.1039/C6CC09676J

    3. [3]

      Tang Q, Liu S X, Liu Y W, et al. Inorg. Chem., 2013, 52:2799-2801 doi: 10.1021/ic400029p

    4. [4]

      Liu X G, Wang H, Chen B, et al. Chem. Commun., 2015, 51:1677-1680 doi: 10.1039/C4CC08945F

    5. [5]

      Li W J, Gao S Y, Liu T F, et al. Langmuir, 2013, 29:8657-8664 doi: 10.1021/la402012d

    6. [6]

      Li H, Eddaoudi M, O'Keeffe M, et al. Nature, 1999, 402:276-279 doi: 10.1038/46248

    7. [7]

      Chen Y Q, Li G R, Qu Y K, et al. Cryst. Growth Des., 2013, 13:901-907 doi: 10.1021/cg3016244

    8. [8]

      Lin X, Jia J H, Zhao X B, et al. Angew. Chem. Int. Ed., 2006, 45:7358-7364 doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Li J, Fu H R, Zhang J, et al. Inorg. Chem., 2015, 54:3093-3095 doi: 10.1021/acs.inorgchem.5b00316

    10. [10]

      Sivaraman G, Anand T, Chellappa D. Analyst, 2012, 137:5881-5884 doi: 10.1039/c2an36209k

    11. [11]

      Karmakar A, Hazra S, da Silva M F C G, et al. New J. Chem., 2014, 38:4837-4846 doi: 10.1039/C4NJ00878B

    12. [12]

      Luo X L, Sun L B, Zhao J, et al. Cryst. Growth Des., 2015, 15:4901-4907 doi: 10.1021/acs.cgd.5b00791

    13. [13]

      Liu L, Peng Y F, Lv X X, et al. CrystEngComm, 2016, 18:2490-2499 doi: 10.1039/C5CE02492G

    14. [14]

      Ma L F, Li C P, Wang L Y, et al. Cryst. Growth Des., 2011, 11:3309-3312 doi: 10.1021/cg200366a

    15. [15]

      Zhao S, Lv X X, Shi L L, et al. RSC Adv., 2016, 6:56035-56041 doi: 10.1039/C6RA10664A

    16. [16]

      Li K, Blatov V A, Fan T, et al. CrystEngComm, 2017, 19:5797-5808 doi: 10.1039/C7CE01176H

    17. [17]

      Peng Y F, Li K, Zhao S, et al. Spectrochim. Acta Part A, 2015, 147:20-25 doi: 10.1016/j.saa.2015.03.087

    18. [18]

      Peng Y F, Zheng L Y, Han S S, et al. Inorg. Chem. Commun., 2014, 44:41-45 doi: 10.1016/j.inoche.2014.02.051

    19. [19]

      Li K, Liu L, Zhao S, et al. Inorg. Chem. Commun., 2015, 52:34-37 doi: 10.1016/j.inoche.2014.12.010

    20. [20]

      Peng Y F, Zhao S, Li K, et al. CrystEngComm, 2015, 17:2544-2552 doi: 10.1039/C4CE02465F

    21. [21]

      Peng Y F, Liu T B, Wu Q Y. Chin. J. Struct. Chem., 2017, 36(7):1156-1163

    22. [22]

      Moulton B, Zaworotko M J. Chem. Rev., 2001, 101:1629-1658 doi: 10.1021/cr9900432

    23. [23]

      Paz F A A, Klinowski J. Inorg. Chem., 2004, 43:3948-3954 doi: 10.1021/ic049794z

    24. [24]

      Dinca M, Yu A F, Long J R. J. Am. Chem. Soc., 2006, 128:8904-8913 doi: 10.1021/ja061716i

    25. [25]

      Garcia Y, Bravic G, Gieck C, et al. Inorg. Chem., 2005, 44:9723-9730 doi: 10.1021/ic050971l

    26. [26]

      Sheldrik G M. Acta Crystallogr. Sect. A:Found. Crystallogr., 2008, A64:112-122

    27. [27]

      Sheldrick G M. Acta Crystallogr. Sect. C:Cryst. Struct. Commun., 2015, C71:3-8

    28. [28]

      Spek A L. Acta Crystallogr. Sect. C:Cryst. Struct. Commun., 2015, C71:9-18

    29. [29]

      Janiak C. J. Chem. Soc. Dalton Trans., 2000: 3885-3896

    30. [30]

      Habib H A, Hoffmann A, Höppea H A, et al. Dalton Trans., 2009: 1742-1751

    31. [31]

      Liang N, Wang J, Yuan D Y, et al. Inorg. Chem.Commun., 2010, 13:844-846 doi: 10.1016/j.inoche.2010.04.009

    32. [32]

      Habib H A, Hoffmann A, Höppea H A, et al. Inorg. Chem., 2009, 48:2166-2180 doi: 10.1021/ic802069k

    33. [33]

      Habib H A, Sanchiz J, Janiak C. Inorg. Chim. Acta, 2009, 362:2452-2460 doi: 10.1016/j.ica.2008.11.003

    34. [34]

      Jin J C, Wang Y Y, Liu P, et al. Cryst. Growth Des., 2010, 10:2029-2032 doi: 10.1021/cg901201s

    35. [35]

      Kan W Q, Yang J, Liu Y Y, et al. CrystEngComm, 2012, 14:6271-6281 doi: 10.1039/c2ce25388g

    36. [36]

      Du P, Yang Y, Yang J, et al. CrystEngComm, 2013, 15:6986-7002 doi: 10.1039/c3ce40828k

  • Scheme 1  Structures of ligands H2adc, 1, 4-H2bdc, 1, 2-H2bdc and btre

    Figure 1  (a) Coordination environment of 1; (b) 2D (4, 4) network of 1; (c) 3D network of 1

    All H atoms are omitted for clarity; 50% thermal ellipsoids; Symmetry codes: A: x, -1+y, z; B: x, 1+y, z; C:-x, 2-y, 2-z; D:-x, 2-y, 1-z

    Figure 2  (a) Coordination environment of 2; (b) Two zigzag chains of 2; (c) 3D network of 2

    All H atoms are omitted for clarity; 50% thermal ellipsoids; Symmetry codes: A: 1-x, -y, 1-z; B: 2-x, 1-y, 1-z; C: 2-x, -y, 1-z; D: 1-x, -y, -z

    Figure 3  (a) Coordination environment of 3; (b) Left-hand helix of 3; (c) 2D (4, 4) network of 3

    All H atoms are omitted for clarity; 50% thermal ellipsoids; Symmetry codes: A: 2-x, 1/2+y, 1-z; B: 2-x, 1/2+y, -z; C: 2-x, -1/2+y, 1-z; D: 2-x, -1/2+y, -z

    Figure 4  Measured and simulated PXRD patterns of complexes 1~3

    Figure 5  TG curves of 1~3

    Figure 6  Solid-state emission spectra of the complexes and btre

    Table 1.  Crystallographic collection and refinement parameters of 1~3

    Complex 1 2 3
    Formula C18H22N6O4Zn C22H20N6O10Zn2 C14H12N6O4Zn
    Formula weight 451.78 659.18 393.67
    T/K 295.31 223.00(10) 293.15
    Crystal system Triclinic Triclinic Monoclinic
    Space group P1 P1 P21
    a / nm 0.663 65(8) 1.033 30(8) 0.699 56(17)
    b / nm 0.967 03(13) 1.161 85(9) 1.210 1(3)
    c / nm 1.507 39(10) 1.164 93(9) 0.925 4(2)
    α/(°) 97.678(8) 65.017(8)
    β/(°) 91.960(7) 77.424(7) 105.009(4)
    γ/(°) 92.400(10) 75.557(7)
    V/ nm3 0.957 10(18) 1.217 52(18) 0.756 6(3)
    F(000) 468 668 400
    Z 2 2 2
    Dc/ (g·cm-3) 1.568 1.798 1.728
    μ/ mm-1 1.322 2.042 1.659
    Reflection collected 7 194 8 821 7 268
    Unique reflection 3 350 (Rint=0.057 9) 4 276 (Rint=0.041 2) 2 644 (Rint=0.022 3)
    Parameter 262 377 227
    Flack parameter -0.005(13)
    GOF on F2 1.016 1.034 0.989
    R1, wR2[I > 2σ(I)] 0.054 5, 0.129 7 0.037 0, 0.079 7 0.021 2, 0.042 9
    R1, wR2(all data) 0.066 9, 0.137 8 0.049 6, 0.085 9 0.023 3, 0.043 9
    (△ρ)max, (△ρ)min/(e·nm-3) 1890, -480 590, -410 350, -240
    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and angles (°) for 1~3

    Complex 1
    Zn(1)-O(1) 0.195 0(4) Zn(1)-O(3)A 0.201 4(3) Zn(1)-N(1) 0.209 5(4)
    Zn(1)-N(4) 0.202 2(3)
    O(1)-Zn(1)-O(3)A 109.31(15) O(1)-Zn(1)-N(1) 102.58(15) O(1)-Zn(1)-N(4) 124.54(15)
    O(3)A-Zn(1)-N(1) 97.04(14) O(3)A-Zn(1)-N(4) 116.57(16) N(1)-Zn(1)-N(4) 101.04(15)
    Complex 2
    Zn(1)-O(1) 0.191 2(2) Zn(1)-O(3) 0.195 6(2) Zn(1)-O(9) 0.196 6(3)
    Zn(1)-N(1) 0.199 8(3) Zn(2)-O(5) 0.198 7(3) Zn(2)-O(7) 0.194 8(2)
    Zn(2)-O(10) 0.200 3(3) Zn(1)-N(4) 0.200 1(3)
    O(1)-Zn(1)-O(3) 107.91(1) O(1)-Zn(1)-O(9) 118.56(1) O(1)-Zn(1)-N(1) 117.11(1)
    O(3)-Zn(1)-O(9) 105.10(1) O(3)-Zn(1)-N(1) 105.96(1) O(9)-Zn(1)-N(1) 100.97(1)
    O(5)-Zn(2)-O(10) 97.58(1) O(5)-Zn(2)-N(4) 122.88(1) O(7)-Zn(2)-O(5) 105.27(1)
    O(7)-Zn(2)-O(10) 108.28(1) O(7)-Zn(2)-N(4) 121.18(1) O(10)-Zn(2)-N(4) 97.46(1)
    Complex 3
    Zn(1)-O(1) 0.193 5(2) Zn(1)-O(4)A 0.195 1(2) Zn(1)-N(1) 0.202 3(3)
    Zn(1)-N(4)B 0.203 5(3)
    O(1)-Zn(1)-O(4)A 120.47(11) O(1)-Zn(1)-N(1) 103.70(11) O(4)A-Zn(1)-N(1) 116.18(10)
    O(1)-Zn(1)-N(4)B 102.12(11) O(4)A-Zn(1)-N(4)B 106.92(11) N(1)-Zn(1)-N(4)B 105.75(11)
      Symmetry codes: A: x, -1+y, z; B: x, 1+y, z; C -x, 2-y, 2-z; D: -x, 2-y, 1-z for 1; A: 1-x, -y, 1-z; B: 2-x, 1-y, 1-z; C: 2-x, -y, 1-z; D: 1-x, -y, -z for 2; A: 2-x, y+1/2, -z+1; B: 2-x, y+1/2, -z; C: 2-x, y-1/2, -z+1; D: 2-x, y-1/2, -z for 3.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  538
  • HTML全文浏览量:  65
文章相关
  • 发布日期:  2018-12-10
  • 收稿日期:  2018-06-11
  • 修回日期:  2018-10-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章