Metal-free direct C(sp3)—H functionalization of 2-alkylthiobenzoic acid to access 1, 3-benzooxathiin-4-one

Ke Yang Yi Li Mengjie Song Shengfei Dai Zheng-Yi Li Xiaoqiang Sun

Citation:  Ke Yang, Yi Li, Mengjie Song, Shengfei Dai, Zheng-Yi Li, Xiaoqiang Sun. Metal-free direct C(sp3)—H functionalization of 2-alkylthiobenzoic acid to access 1, 3-benzooxathiin-4-one[J]. Chinese Chemical Letters, 2021, 32(1): 146-149. doi: 10.1016/j.cclet.2020.11.036 shu

Metal-free direct C(sp3)—H functionalization of 2-alkylthiobenzoic acid to access 1, 3-benzooxathiin-4-one

English

  • 1, 3-Benzooxathiin-4-ones have received much attention due to their vital use in a large number of insecticidal and fungicidal agents, crop protection agents, and food additives (Fig. 1) [1-3]. Previous methods for the synthesis of 1, 3-benzooxathiin-4-ones mainly rely on the cross-coupling of thiophenol derivatives with alkynes [4-7] and alkenes [8, 9], or the Pummerer reaction of sulfoxide derivatives [10, 11]. However, these methods always suffer from some drawbacks, including the use of odour smelling thiophenols, the requirement of pre-functionalization of thioethers or limited substrate scope.

    Figure 1

    Figure 1.  Selected important 1, 3-benzooxathiin-4-one derivatives.

    Recently, direct C—H bond functionalization has been regarded as one of the most effective and direct methods for the construction of C—C or C—heteroatom bond [12-24]. Within this reaction class, transition-metal mediated C(sp3)—H bond functionalization of thioether derivatives has been developed to synthesize 1, 3-benzooxathiin-4-ones. The Porcel group reported the allylic C—H bond intramolecular cyclization of 2-(allylthio)benzoic acid mediated by the excess amounts of AgOAc (Scheme 1a) [25]. Moreover, our group also demonstrated the Ag2O-promoted intramolecular C(sp3)—H bond functionalization of 2-methylthiobenzamide and sequential acidolysis to access 4H-benzo[d][1, 3]oxathiin-4-one (Scheme 1b) [26]. However, the current methods often need expensive silver salts and with the limited substrate scope. Therefore, development of a metal-free and highly efficient method via a direct C(sp3)—H functionalization for the synthesis of 1, 3-benzooxathiin-4-ones would be of great significance.

    Scheme 1

    Scheme 1.  Direct C(sp3)—H bond functionalization for the construction of 1, 3-benzooxathiin-4-one derivatives.

    Selectfluor, as a remarkable electrophilic fluorinating reagent, has been widely used in the fluorination process in recent years due to its low toxicity, high thermal stability, good solubility and stability in polar solvents [27-30]. Besides, it can also be employed as a radical initiator, fluorine cation initiator and transition metal oxidant to achieve "fluorine-free" reactions [31-44]. In the continuing efforts for developing novel metal-free strategies in the direct C(sp3)—H functionalization, herein we disclose the Selectfluor-mediated cyclization of 2-alkylthiobenzoic acid to access 1, 3-benzooxathiin-4-one via a direct α-C(sp3)—H functionalization reaction (Scheme 1c).

    Our investigation began with the direct C(sp3)—H intramolecular cyclization of 2-(ethylthio)benzoic acid 1a in the presence of Selectfluor in DCE at 80 ℃, the desired product 2a was isolated in 53% yield (Table 1, entry 1). To our delight, the subsequent examination of different reaction solvents indicated that MeCN was the optimal solvent, affording the desired product 2a in 82% isolated yield (Table 1, entries 2–7). Next, the additive agent screening showed that none of the other additives provided better results than Selectfluor (Table 1, entries 8–14). It was then noticed that the yield of 2a could not be improved any more by increasing or decreasing the amounts of Selectfluor and the reaction temperature (Table 1, entries 15–18). Finally, the desired product 2a could not be detected in the absence of Selectfluor (Table 1, entry 19).

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    With the optimized reaction conditions in hand, the substrate scope study on the sulfur atom substituents of 2-alkylthiobenzoic acid was carried out in Scheme 2. As expected, the substrates bearing different linear and branched alkyl substituents on the sulfur atom, including methyl, ethyl, n-propyl, n-butyl, n-hexyl, i-propyl and i-butyl, were transformed to the desired products 2a-g in good yields. Moreover, the substrates with a benzyl or phenethyl group also gave the desired products 2h-i in excellent yield. In addition, both cyano- and ester-substituted substrate were well-tolerated to afford the desired products 2j and 2k in 81% and 63% yield. It was noteworthy that the highly reactive allyl and propargyl substrates could also provide the desired products 2l-m in good yield.

    Scheme 2

    Scheme 2.  Substrate scope of substituents on the sulfur atom. Reaction conditions: 1 (0.2 mmol), Selectfluor (0.3 mmol), MeCN (2.0 mL), 80 ℃, 12 h. Isolated yield.

    Next, the substrate scope of substituents on the aromatic ring was also tested (Scheme 3). Both electron withdrawing and electron-donating groups on the phenyl ring were compatible under the current reaction system, affording the desired products 2n-u in good yields. Notably, a variety of functional groups such as methyl, methoxy and halogen groups were well-suited for this reaction, allowing for further transformations of the initial products. However, the pyridine-containing substrate 1v failed to access the desired product 2v.

    Scheme 3

    Scheme 3.  Substrate scope of substituents on the aromatic ring. Reaction conditions: 1 (0.2 mmol), Selectfluor (0.3 mmol), MeCN (2.0 mL), 80 ℃, 12 h. Isolated yield.

    To provide some insights into the reaction mechanism, a series of control experiments were carried out (Scheme 4). Firstly, radical trapping experiments were performed, and the results showed that the addition of TEMPO inhibited this process, suggesting that a single electron transfer (SET) may be involved in the reaction (Scheme 4a). Furthermore, the reaction of sulfoxide 3 with Selectfluor failed to produce the desired product 2b, indicating that the sulfoxide intermediate may not be involved in this reaction (Scheme 4b). Next, the H/D exchange could not be detected when this reaction was performed with an isotopically labelled substrate [D]-1b (Scheme 4c). The KIE experiment between 1b and [D]-1b showed that the second-order of kinetic isotope effect was observed and the cleavage of the C(sp3)—H bond may not be involved in a rate-determining step (Scheme 4d).

    Scheme 4

    Scheme 4.  Mechanistic studies.

    On the basis of previous literatures [26, 45-54] and our control experiments, a plausible mechanism has been depicted in Scheme 5. The initial oxidation of 2-methylthiobenzoic acid 1b by Selectfluor affords the radical A and radical cation B [45-48]. Then the carbon-centered radical C can be formed through a 1, 6-H radical shift process [49, 50]. Subsequently, the radical C is oxidized to the corresponding carbocation D and its isomer E in the presence of radical cation B and Selectfluor [51, 52]. Finally, an intramolecular cyclization of intermediate E and the sequential deprotonation provide the desired product 2b. However, a plausible pathway involving α-C–H fluorination and sequential intramolecular cyclization cannot be excluded at the present stage [53, 46-54].

    Scheme 5

    Scheme 5.  The proposed mechanism.

    In order to illustrate the synthetic utility of this novel method, a gram-scale reaction for the synthesis of benzooxathiin-4-one 2b was carried out (Scheme 6). When 2-(methylthio)benzoic acid 1b (1.68 g, 10 mmol) was treated with 1.5 equiv. of Selectfluor in MeCN (30 mL) at 80 ℃, the desired product 2b was obtained in 78% isolated yield.

    Scheme 6

    Scheme 6.  A gram-scale reaction for the synthesis of benzooxathiin-4-one 2b.

    In summary, an efficient and direct cyclization of 2-alkylthiobenzoic acid via a Selectfluor-promoted α-C(sp3)—H functionalization has been developed. This process may involve a radical pathway in the presence of Selectfluor. Moreover, this metal-free strategy also provides an important complementary method to access various 1, 3-benzooxathiin-4-one derivatives.

    The authors report no declarations of interest.

    We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21572026, 21702019), Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University.


    * Corresponding authors.
    E-mail addresses: keyang@cczu.edu.cn (K. Yang), zyli@cczu.edu.cn (Z.-Y. Li).
    1. [1]

      J. Rheinheimer, U.J. Vogelbacher, E. Baumann, et al., US Patent 5569640, 1996.

    2. [2]

      M. Yamato, K. Hashigaki, Chem. Senses Flavour 4 (1979) 35-47. doi: 10.1093/chemse/4.1.35

    3. [3]

      A. Senning, S.O. Lawesson, Acta Chem. Scand. 16 (1962) 1175-1182. doi: 10.3891/acta.chem.scand.16-1175

    4. [4]

      T. Sonehara, S. Murakami, S. Yamazaki, et al., Org. Lett. 19 (2017) 4299-4302. doi: 10.1021/acs.orglett.7b01953

    5. [5]

      H.H. Wang, T. Shi, W.W. Gao, et al., Org. Biomol. Chem. 15 (2017) 8013-8017. doi: 10.1039/C7OB02101A

    6. [6]

      Y. Nishina, J. Miyata, Synthesis 44 (2012) 2607-2613. doi: 10.1055/s-0032-1316563

    7. [7]

      N.G. Kundu, B. Nandi, Synlett (2001) 415-417.

    8. [8]

      X. Chaminade, L. Coulombel, S. Olivero, et al., Eur. J. Org. Chem. 2006 (2006) 3554-3593. doi: 10.1002/ejoc.200600300

    9. [9]

      D.T. Mowry, W.H. Yanko, E.L. Ringwald, J. Am. Chem. Soc. 69 (1947) 2358-2361. doi: 10.1021/ja01202a032

    10. [10]

      S. Ito, Y. Kubota, M. Asami, Chem. Lett. 45 (2016) 16-18. doi: 10.1246/cl.150896

    11. [11]

      M. Yamanaka, S. Shimada, W. Ando, et al., Phosphorus Sulfur Silicon Relat. Elem. 190 (2015) 1307-1308. doi: 10.1080/10426507.2015.1024788

    12. [12]

      Q. Shao, K. Wu, Z. Zhuang, et al., Acc. Chem. Res. 53 (2020) 833-851. doi: 10.1021/acs.accounts.9b00621

    13. [13]

      X.M. Xu, D.M. Chen, Z.L. Wang, Chin. Chem. Lett. 31 (2020) 49-57. doi: 10.1016/j.cclet.2019.05.048

    14. [14]

      K. Yang, M. Song, H. Liu, et al., Chem. Sci. 11 (2020) 12616-12632. doi: 10.1039/D0SC03052J

    15. [15]

      W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895-1898. doi: 10.1016/j.cclet.2020.02.011

    16. [16]

      B. Niu, K. Yang, B. Lawrence, et al., ChemSusChem 12 (2019) 2955-2969. doi: 10.1002/cssc.201900151

    17. [17]

      K. Yang, M. Song, Z. Ma, et al., Org. Chem. Front. 6 (2019) 3996-3999. doi: 10.1039/C9QO01073D

    18. [18]

      Z. Shen, C. Pi, X. Cui, et al., Chin. Chem. Lett. 30 (2019) 1374-1378. doi: 10.1016/j.cclet.2019.01.033

    19. [19]

      Q. Zhao, X.S. Ji, Y.Y. Gao, et al., Org. Lett. 20 (2018) 3596-3600. doi: 10.1021/acs.orglett.8b01382

    20. [20]

      X.T. Zhu, T.S. Zhang, Q. Zhao, et al., Chem. Asian J. 13 (2018) 1157-1164. doi: 10.1002/asia.201800211

    21. [21]

      K. Yang, D. Li, L. Zhang, et al., RSC Adv. 51 (2018) 13671-13674.

    22. [22]

      Y. Yang, J. Lan, J. You, Chem. Rev. 117 (2017) 8787-8863. doi: 10.1021/acs.chemrev.6b00567

    23. [23]

      M.M. Chen, L.Y. Shao, L.J. Lun, Chin. Chem. Lett. 30 (2019) 702-706. doi: 10.1016/j.cclet.2018.09.022

    24. [24]

      Z.K. Chen, B.J. Wang, J.T. Zhang, et al., Org. Chem. Front. 2 (2015) 1107-1297. doi: 10.1039/C5QO00004A

    25. [25]

      U.A. Carrillo-Arcos, J. Rojas-Ocampo, S. Porcel, Dalton Trans. 45 (2016) 479-483. doi: 10.1039/C5DT03808A

    26. [26]

      K. Yang, B. Niu, Z. Ma, et al., J. Org. Chem. 84 (2019) 14045-14052. doi: 10.1021/acs.joc.9b02202

    27. [27]

      P.A. Champagne, J. Desroches, J.D. Hamel, et al., Chem. Rev. 115 (2015) 9073-9174. doi: 10.1021/cr500706a

    28. [28]

      M.G. Campbell, T. Ritter, Chem. Rev. 115 (2015) 612-633. doi: 10.1021/cr500366b

    29. [29]

      J. Xu, Z. Kuang, Q. Song, Chin. Chem. Lett. 29 (2018) 963-966. doi: 10.1016/j.cclet.2017.10.027

    30. [30]

      M.R.P. Heravi, Chin. Chem. Lett. 21 (2010) 1399-1402. doi: 10.1016/j.cclet.2010.06.030

    31. [31]

      K. Yang, M. Song, A. Ali, et al., Chem. Asian J. 15 (2020) 729-741. doi: 10.1002/asia.202000011

    32. [32]

      F.J.A. Troyano, K. Merkens, A. Gomez-Suarez, Asian J. Org. Chem. 9 (2020) 992-1007. doi: 10.1002/ajoc.202000196

    33. [33]

      S. Stavber, Molecules 16 (2011) 6432-6464. doi: 10.3390/molecules16086432

    34. [34]

      H. Mei, J. Liu, R. Pajkert, et al., Org. Biomol. Chem. 18 (2020) 3761-3766. doi: 10.1039/D0OB00720J

    35. [35]

      L. Niu, J. Liu, X.A. Liang, et al., Nature Commun. 10 (2019) 467-473. doi: 10.1038/s41467-019-08413-9

    36. [36]

      Y. Kong, W. Xu, X. Liu, Chin. Chem. Lett. 31 (2020) 3245-3249. doi: 10.1016/j.cclet.2020.05.022

    37. [37]

      Z. Cao, Q. Zhu, Y.W. Lin, et al., Chin. Chem. Lett. 30 (2019) 2132-2138. doi: 10.1016/j.cclet.2019.09.041

    38. [38]

      H. Zhao, J. Jin, Org. Lett. 21 (2019) 6179-6184. doi: 10.1021/acs.orglett.9b01635

    39. [39]

      G. He, Y. Li, Z. Yu, et al., Org. Chem. Front. 6 (2019) 3644-3648. doi: 10.1039/C9QO00845D

    40. [40]

      B. Sun, W.P. Mai, L.R. Yang, et al., Chin. Chem. Lett. 26 (2015) 977-979. doi: 10.1016/j.cclet.2015.05.008

    41. [41]

      K. Yang, Y. Li, Z. Ma, et al., Eur. J. Org. Chem. 2019 (2019) 5812-5814. doi: 10.1002/ejoc.201900960

    42. [42]

      K. Yang, H. Zhang, B. Niu, et al., Eur. J. Org. Chem. 2018 (2018) 5520-5523. doi: 10.1002/ejoc.201801090

    43. [43]

      L.Y. Xie, S. Peng, F. Liu, et al., Adv. Synth. Catal. 360 (2018) 4259-4264. doi: 10.1002/adsc.201800918

    44. [44]

      L.Y. Xie, J. Qu, S. Peng, et al., Green Chem. 20 (2018) 760-764. doi: 10.1039/C7GC03106H

    45. [45]

      Y. Chen, H. Qi, N. Chen, et al., J. Org. Chem. 84 (2019) 9044-9050. doi: 10.1021/acs.joc.9b00965

    46. [46]

      X. Zhang, Y. Liao, R. Qian, et al., Org. Lett. 7 (2005) 3877-3880. doi: 10.1021/ol051281o

    47. [47]

      B. Sun, S. Yin, X. Zhuang, et al., Org. Biomol. Chem. 16 (2018) 6017-6024. doi: 10.1039/C8OB01348A

    48. [48]

      Y.H. Lv, K. Sun, W.Y. Pu, et al., RSC Adv. 6 (2016) 93486-93490. doi: 10.1039/C6RA22653A

    49. [49]

      D. Shi, H.T. Qin, C. Zhu, et al., Eur. J. Org. Chem. 2015 (2015) 5084-5088. doi: 10.1002/ejoc.201500780

    50. [50]

      S. Chiba, H. Chen, Org. Biomol. Chem. 12 (2014) 4051-4060. doi: 10.1039/C4OB00469H

    51. [51]

      Z. Li, H. Li, X. Guo, et al., Org. Lett. 10 (2008) 803-805. doi: 10.1021/ol702934k

    52. [52]

      L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31 (2020) 67-70. doi: 10.1016/j.cclet.2019.05.041

    53. [53]

      S.C. Annedi, K. Majumder, L. Wei, et al., Bioorg. Med. Chem. 13 (2005) 2943-2958. doi: 10.1016/j.bmc.2005.02.011

    54. [54]

      S.C. Annedi, W. Li, S. Samson, et al., J. Org. Chem. 68 (2003) 1043-1049. doi: 10.1021/jo026310c

  • Figure 1  Selected important 1, 3-benzooxathiin-4-one derivatives.

    Scheme 1  Direct C(sp3)—H bond functionalization for the construction of 1, 3-benzooxathiin-4-one derivatives.

    Scheme 2  Substrate scope of substituents on the sulfur atom. Reaction conditions: 1 (0.2 mmol), Selectfluor (0.3 mmol), MeCN (2.0 mL), 80 ℃, 12 h. Isolated yield.

    Scheme 3  Substrate scope of substituents on the aromatic ring. Reaction conditions: 1 (0.2 mmol), Selectfluor (0.3 mmol), MeCN (2.0 mL), 80 ℃, 12 h. Isolated yield.

    Scheme 4  Mechanistic studies.

    Scheme 5  The proposed mechanism.

    Scheme 6  A gram-scale reaction for the synthesis of benzooxathiin-4-one 2b.

    Table 1.  Optimization of reaction conditions.a

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  1013
  • HTML全文浏览量:  145
文章相关
  • 发布日期:  2021-01-15
  • 收稿日期:  2020-09-25
  • 接受日期:  2020-11-11
  • 修回日期:  2020-11-09
  • 网络出版日期:  2020-11-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章