
Encapsulation of superparamagnetic Fe3O4@SiO2 core/shell nanoparticles in MnO2 microflowers with high surface areas
English
Encapsulation of superparamagnetic Fe3O4@SiO2 core/shell nanoparticles in MnO2 microflowers with high surface areas
-
-
-
[1] J. Fei, Y. Cui, X. Yan, et al., Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment, Adv. Mater. 20 (2008) 452-456.[1] J. Fei, Y. Cui, X. Yan, et al., Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment, Adv. Mater. 20 (2008) 452-456.
-
[2] H. Chen, J. He, Facile synthesis and monodisperse manganese oxide nanostructures and their application in water treatment, J. Phys. Chem. C 112 (2008) 17540-17545.[2] H. Chen, J. He, Facile synthesis and monodisperse manganese oxide nanostructures and their application in water treatment, J. Phys. Chem. C 112 (2008) 17540-17545.
-
[3] Y. Zhai, J. Zhai, M. Zhou, S. Dong, Ordered magnetic core-manganese oxide shell nanostructures and their application in water treatment, J. Mater. Chem. 19 (2009) 7030-7035.[3] Y. Zhai, J. Zhai, M. Zhou, S. Dong, Ordered magnetic core-manganese oxide shell nanostructures and their application in water treatment, J. Mater. Chem. 19 (2009) 7030-7035.
-
[4] A.A. Pandit, R.A. Pawar, D.R. Shinde, Colloidal MnO2 catalysed degradation of two azo dyes methyl red and methyl orange from aqueous medium, Int. J. Sci. Eng. Res. 4 (2013) 1119-1122.[4] A.A. Pandit, R.A. Pawar, D.R. Shinde, Colloidal MnO2 catalysed degradation of two azo dyes methyl red and methyl orange from aqueous medium, Int. J. Sci. Eng. Res. 4 (2013) 1119-1122.
-
[5] H. Huang, S. Sithambaram, C.H. Chen, et al., Microwave-assisted hydrothermal synthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and their catalytic studies, Chem. Mater. 22 (2010) 3664-3669.[5] H. Huang, S. Sithambaram, C.H. Chen, et al., Microwave-assisted hydrothermal synthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and their catalytic studies, Chem. Mater. 22 (2010) 3664-3669.
-
[6] Z. Ai, L. Zhang, F. Kong, et al., Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity, Mater. Chem. Phys. 111 (2008) 162-167.[6] Z. Ai, L. Zhang, F. Kong, et al., Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity, Mater. Chem. Phys. 111 (2008) 162-167.
-
[7] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (2011) 232-236.[7] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (2011) 232-236.
-
[8] M.M. Thackeray, Manganese oxides for lithium batteries, Prog. Solid State Chem. 25 (1997) 1-71.[8] M.M. Thackeray, Manganese oxides for lithium batteries, Prog. Solid State Chem. 25 (1997) 1-71.
-
[9] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721.[9] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721.
-
[10] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406-4417.[10] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406-4417.
-
[11] T. Brousse, M. Toupin, R. Dugas, et al., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153 (2006) A2171-A2180.[11] T. Brousse, M. Toupin, R. Dugas, et al., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153 (2006) A2171-A2180.
-
[12] X.L. Wang, A.B. Yuan, Y.Q. Wang, Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte, J. Power Sources 172 (2007) 1007-1011.[12] X.L. Wang, A.B. Yuan, Y.Q. Wang, Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte, J. Power Sources 172 (2007) 1007-1011.
-
[13] G.H. Qiu, H. Huang, S. Dharmarathna, et al., Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties, Chem. Mater. 23 (2011) 3892-3901.[13] G.H. Qiu, H. Huang, S. Dharmarathna, et al., Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties, Chem. Mater. 23 (2011) 3892-3901.
-
[14] T.T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium-air batteries, ACS Nano 6 (2012) 8067-8077.[14] T.T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium-air batteries, ACS Nano 6 (2012) 8067-8077.
-
[15] D. Dallinger, C.O. Kappe, Microwave-assisted synthesis in water as solvent, Chem. Rev. 107 (2007) 2563-2591.[15] D. Dallinger, C.O. Kappe, Microwave-assisted synthesis in water as solvent, Chem. Rev. 107 (2007) 2563-2591.
-
[16] Y.J. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev. 114 (2014) 6462-6555.[16] Y.J. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev. 114 (2014) 6462-6555.
-
[17] J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, Y. Yin, Superparamagnetic magnetite colloidal nanocrystal clusters, Angew. Chem. Int. Ed. 46 (2007) 4342-4345.[17] J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, Y. Yin, Superparamagnetic magnetite colloidal nanocrystal clusters, Angew. Chem. Int. Ed. 46 (2007) 4342-4345.
-
[18] Y. Hu, Y. Sun, Stable magnetic hot spots for simultaneous concentration and ultrasensitive SERS detection of solution analytes, J. Phys. Chem. C 116 (2012) 13329-13335.[18] Y. Hu, Y. Sun, Stable magnetic hot spots for simultaneous concentration and ultrasensitive SERS detection of solution analytes, J. Phys. Chem. C 116 (2012) 13329-13335.
-
[19] Y. Hu, Y. Sun, A generic approach for the synthesis of dimer nanoclusters and asymmetric nanoassemblies, J. Am. Chem. Soc. 135 (2013) 2213-2221.[19] Y. Hu, Y. Sun, A generic approach for the synthesis of dimer nanoclusters and asymmetric nanoassemblies, J. Am. Chem. Soc. 135 (2013) 2213-2221.
-
[20] Y. Hu, Z. Li, Y. Sun, Enhanced photocatalysis by hybrid hierarchical assembly of plasmonic nanocrystals with high surface areas, Catal. Today 225 (2014) 177-184.[20] Y. Hu, Z. Li, Y. Sun, Enhanced photocatalysis by hybrid hierarchical assembly of plasmonic nanocrystals with high surface areas, Catal. Today 225 (2014) 177-184.
-
[21] Y. Hu, Y. Liu, Z. Li, Y. Sun, Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells: synthesis and photo-enhanced catalysis, Adv. Funct. Mater. 24 (2014) 2828-2836.[21] Y. Hu, Y. Liu, Z. Li, Y. Sun, Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells: synthesis and photo-enhanced catalysis, Adv. Funct. Mater. 24 (2014) 2828-2836.
-
[22] Y.G. Sun, L. Wang, Y. Liu, Y. Ren, Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly, Small 10 (2014), http://dx.doi.org/10.1002/ smll.201400892.[22] Y.G. Sun, L. Wang, Y. Liu, Y. Ren, Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly, Small 10 (2014), http://dx.doi.org/10.1002/ smll.201400892.
-
[23] Y. Sun, Y. Liu, T.T. Truong, Y. Ren, Thermal transformation of d-MnO2 nanoflowers studied by in-situ TEM, Sci. China Chem. 55 (2012) 2346-2352.[23] Y. Sun, Y. Liu, T.T. Truong, Y. Ren, Thermal transformation of d-MnO2 nanoflowers studied by in-situ TEM, Sci. China Chem. 55 (2012) 2346-2352.
-
-

计量
- PDF下载量: 0
- 文章访问数: 963
- HTML全文浏览量: 11