Recent developments in two-dimensional (2D) correlation spectroscopy

Isao Noda

Citation:  Isao Noda. Recent developments in two-dimensional (2D) correlation spectroscopy[J]. Chinese Chemical Letters, 2015, 26(2): 167-172. doi: 10.1016/j.cclet.2014.10.006 shu

Recent developments in two-dimensional (2D) correlation spectroscopy

摘要: Recent noteworthy developments in the field of two-dimensional (2D) correlation spectroscopy are reviewed. 2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use. The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra. Such spectral intensity variations are then converted into 2D spectra by a form of correlation analysis for subsequent interpretation. Many different types of 2D correlation approaches have been proposed. In particular, 2D hetero-correlation and multiple perturbation correlation analyses, including orthogonal sample design scheme, are discussed in this review. Additional references to other important developments in the field of 2D correlation spectroscopy, such as projection correlation and codistribution analysis, were also provided.

English

  • 
    1. [1] (a) I. Noda, Two-dimensional infrared (2D IR) spectroscopy of synthetic and biopolymers, Bull. Am. Phys. Soc. 31 (1986) 520; (b) I. Noda, Two-dimensional infrared (2D IR) spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8120; (c) I. Noda, Two-dimensional infrared (2D IR) spectroscopy: theory and applications, Appl. Spectrosc. 44 (1990) 550-561; (d) I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336; (e) I. Noda, Determination of two-dimensional correlation spectra using the Hilbert transform, Appl. Spectrosc. 54 (2000) 994-999; (f) I. Noda, A.E. Dowrey, C. Marcott, G.M. Story, Y. Ozaki, Generalized two-dimensional correlation spectroscopy, Appl. Spectrosc. 54 (2000) 236A-248A; (g) I. Noda, Y. Ozaki, Two-dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy, Wiley, Chichester, 2004.[1] (a) I. Noda, Two-dimensional infrared (2D IR) spectroscopy of synthetic and biopolymers, Bull. Am. Phys. Soc. 31 (1986) 520; (b) I. Noda, Two-dimensional infrared (2D IR) spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8120; (c) I. Noda, Two-dimensional infrared (2D IR) spectroscopy: theory and applications, Appl. Spectrosc. 44 (1990) 550-561; (d) I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336; (e) I. Noda, Determination of two-dimensional correlation spectra using the Hilbert transform, Appl. Spectrosc. 54 (2000) 994-999; (f) I. Noda, A.E. Dowrey, C. Marcott, G.M. Story, Y. Ozaki, Generalized two-dimensional correlation spectroscopy, Appl. Spectrosc. 54 (2000) 236A-248A; (g) I. Noda, Y. Ozaki, Two-dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy, Wiley, Chichester, 2004.

    2. [2] (a) I. Noda, A.E. Dowrey, C. Marcott, Recent developments in two-dimensional infrared (2D IR) correlation spectroscopy, Appl. Spectrosc. 47 (1993) 1317-1323; (b) I. Noda, Progress in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 3-17; (c) I. Noda, Advances in two-dimensional correlation spectroscopy, Viv. Spectrosc. 36 (2004) 143-165; (d) I. Noda, Progress in two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 2-15; (e) I. Noda, Recent advancement in the field of two-dimensional correlation spectroscopy, J. Mol. Struct. 883-884 (2008) 2-26; (f) I. Noda, Two-dimensional correlation spectroscopy—biannual survey 2007-2009, J. Mol. Struct. 974 (2010) 3-24; (g) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments, J. Mol. Struct. 1069 (2014) 3-22; (h) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes, J. Mol. Struct. 1069 (2014) 23-49.[2] (a) I. Noda, A.E. Dowrey, C. Marcott, Recent developments in two-dimensional infrared (2D IR) correlation spectroscopy, Appl. Spectrosc. 47 (1993) 1317-1323; (b) I. Noda, Progress in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 3-17; (c) I. Noda, Advances in two-dimensional correlation spectroscopy, Viv. Spectrosc. 36 (2004) 143-165; (d) I. Noda, Progress in two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 2-15; (e) I. Noda, Recent advancement in the field of two-dimensional correlation spectroscopy, J. Mol. Struct. 883-884 (2008) 2-26; (f) I. Noda, Two-dimensional correlation spectroscopy—biannual survey 2007-2009, J. Mol. Struct. 974 (2010) 3-24; (g) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments, J. Mol. Struct. 1069 (2014) 3-22; (h) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes, J. Mol. Struct. 1069 (2014) 23-49.

    3. [3] (a) I. Noda, Two-dimensional correlation approach to the dynamic rheooptical characterization of polymers, Chemtracts Macromol. Chem. 1 (1990) 89-105; (b) F.E. Barton II, D.S. Himmersbach, J.H. Duckworth, M.J. Smith, Two-dimensional vibrational spectroscopy: correlation of mid-and near-infrared regions, Appl. Spectrosc. 46 (1992) 420-429; (c) N. Katayama, M. Kondo, M. Miyazawa, Study on molecular structure and hydration mechanism of Domyouji-ko starch by IE and NIR hetero 2D analysis, J. Mol. Struct. 974 (2010) 179-182; (d) T. Nishi, T. Genkawa, M. Watari, Y. Ozaki, Selection of NIR region for a regression model of the ethanol concentration in fermentation process by an online NIR and mid-IR dual-region spectrometer and 2D heterospectral correlation spectroscopy, Anal. Sci. 28 (2012) 1165-1170; (e) H. Yamasaki, S. Morita, Epoxy curing reaction studied by using two-dimensional correlation infrared and near-infrared spectroscopy, J. Appl. Polym. Sci. 119 (2011) 871-881; (f) B.K. Via, S. Adhikari, S. Taylor, Modeling for proximate analysis and heating value of torrefied biomass with vibrational spectroscopy, Bioresour. Technol. 133 (2013) 1-8;(g) Ž. Sovová, V. Kopecký Jr., T. Pazderka, et al., Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity, J. Mol. Model. 17 (2011) 1353-1370; (h) T.R. Rudd, E.A. Yates, M. Hricovíni, Spectroscopic and theoretical approaches for the determination of heparin saccharide structure and the study of protein-glycosaminoglycan complexes in solution, Curr. Med. Chem. 16 (2009) 4750-4766; (i) H.C. Choi, S.R. Ryu, H. Ji, et al., Two-dimensional hetero-spectral correlation analysis of X-ray photoelectron spectra and infrared spectra for spin-coated films of biodegradable poly(3-hydroxubutyrate-co-3-hydroxyhexanoate) copolymers, J. Phys. Chem. B 114 (2010) 10979-10985; (j) M. Mecozzi, M. Pietroletti, V. Gallo, M.E. Conti, Formation of incubated marine mucilages investigated by FTIR and UV-vis spectroscopy and supported by twodimensional correlation analysis, Marine Chem. 116 (2009) 18-35; (k) S.R. Ryu, W.M. Bae, W.J. Hong, K.J. Ihn, Y.M. Jung, Characterization of chain transfer reaction during radical polymerization of silver nanocomposite polyvinylpyrrolidone by using 2D hetero-spectral IR/NMR correlation spectroscopy, Vib. Spectrosc. 60 (2012) 168-172; (l) D.S. Smirnova, J.A. Kornfield, D.J. Lohshe, Morphology development in model polyethylene via two-dimensional correlation analysis, Macromolecules 44 (2011) 6836-6848; (m) L. Guo, N. Spegazzini, H. Sato, et al., Multistep crystallization process involving sequential formations of density fluctuations, “intermediate structures”, and lamellar crystallites: poly(3-hydroxybutyrate) as investigated by time-resolved synchrotron SAXS and WAXD, Macromolecules 45 (2012) 313-328; (n) L.R. Whitman, K.P. Bork, Y. Tang, Two-dimensional correlation in cyclic voltammetry and electrochemical quartz crystal microbalance: a complementary tool to conventional techniques, J. Electroanal. Chem. 661 (2011) 100-105; (o) J. Andary, J. Maalouly, R. Quaini, et al., Application of 2D correlation spectroscopy on olive stones acid hydrolysates: effect of overliming, Chemom. Intell. Lab. Syst. 113 (2012) 58-67.[3] (a) I. Noda, Two-dimensional correlation approach to the dynamic rheooptical characterization of polymers, Chemtracts Macromol. Chem. 1 (1990) 89-105; (b) F.E. Barton II, D.S. Himmersbach, J.H. Duckworth, M.J. Smith, Two-dimensional vibrational spectroscopy: correlation of mid-and near-infrared regions, Appl. Spectrosc. 46 (1992) 420-429; (c) N. Katayama, M. Kondo, M. Miyazawa, Study on molecular structure and hydration mechanism of Domyouji-ko starch by IE and NIR hetero 2D analysis, J. Mol. Struct. 974 (2010) 179-182; (d) T. Nishi, T. Genkawa, M. Watari, Y. Ozaki, Selection of NIR region for a regression model of the ethanol concentration in fermentation process by an online NIR and mid-IR dual-region spectrometer and 2D heterospectral correlation spectroscopy, Anal. Sci. 28 (2012) 1165-1170; (e) H. Yamasaki, S. Morita, Epoxy curing reaction studied by using two-dimensional correlation infrared and near-infrared spectroscopy, J. Appl. Polym. Sci. 119 (2011) 871-881; (f) B.K. Via, S. Adhikari, S. Taylor, Modeling for proximate analysis and heating value of torrefied biomass with vibrational spectroscopy, Bioresour. Technol. 133 (2013) 1-8;(g) Ž. Sovová, V. Kopecký Jr., T. Pazderka, et al., Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity, J. Mol. Model. 17 (2011) 1353-1370; (h) T.R. Rudd, E.A. Yates, M. Hricovíni, Spectroscopic and theoretical approaches for the determination of heparin saccharide structure and the study of protein-glycosaminoglycan complexes in solution, Curr. Med. Chem. 16 (2009) 4750-4766; (i) H.C. Choi, S.R. Ryu, H. Ji, et al., Two-dimensional hetero-spectral correlation analysis of X-ray photoelectron spectra and infrared spectra for spin-coated films of biodegradable poly(3-hydroxubutyrate-co-3-hydroxyhexanoate) copolymers, J. Phys. Chem. B 114 (2010) 10979-10985; (j) M. Mecozzi, M. Pietroletti, V. Gallo, M.E. Conti, Formation of incubated marine mucilages investigated by FTIR and UV-vis spectroscopy and supported by twodimensional correlation analysis, Marine Chem. 116 (2009) 18-35; (k) S.R. Ryu, W.M. Bae, W.J. Hong, K.J. Ihn, Y.M. Jung, Characterization of chain transfer reaction during radical polymerization of silver nanocomposite polyvinylpyrrolidone by using 2D hetero-spectral IR/NMR correlation spectroscopy, Vib. Spectrosc. 60 (2012) 168-172; (l) D.S. Smirnova, J.A. Kornfield, D.J. Lohshe, Morphology development in model polyethylene via two-dimensional correlation analysis, Macromolecules 44 (2011) 6836-6848; (m) L. Guo, N. Spegazzini, H. Sato, et al., Multistep crystallization process involving sequential formations of density fluctuations, “intermediate structures”, and lamellar crystallites: poly(3-hydroxybutyrate) as investigated by time-resolved synchrotron SAXS and WAXD, Macromolecules 45 (2012) 313-328; (n) L.R. Whitman, K.P. Bork, Y. Tang, Two-dimensional correlation in cyclic voltammetry and electrochemical quartz crystal microbalance: a complementary tool to conventional techniques, J. Electroanal. Chem. 661 (2011) 100-105; (o) J. Andary, J. Maalouly, R. Quaini, et al., Application of 2D correlation spectroscopy on olive stones acid hydrolysates: effect of overliming, Chemom. Intell. Lab. Syst. 113 (2012) 58-67.

    4. [4] (a) L.T. Letendre, W. McNavage, C. Pibel, D.K. Kuo, H.L. Dai, Time-resolved FTIR emission spectroscopy of transient radicals, J. Chin. Chem. Soc. 52 (2005) 677-686; (b) W. McNavage, H.L. Dai, Two-dimensional cross-spectral correlation analysis and its application to time-resolved Fourier transform emission spectra of transient radicals, J. Chem. Phys. 123 (2005) 184104; (c) F. Pi, H. Shinzawa, M.A. Czarnecki, M. Iwahashi, M. Suzuki, Y. Ozaki, Selfassembling of oleic acid (cis-9,cis-12-octadecalienoic acid) in ethanol studied by time-dependent attenuated total reflectance (ATR) infrared (IR) and two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 974 (2010) 40-45; (d) C. Marcott, G.M. Story, A.E. Dowrey, I. Noda, in: C.L. Wilkins (Ed.), Enhancement of Chemical Information through Computer-Assisted Examination of Spectral Variations, vol. 4, Computer-Enhanced Analytical Spectroscopy, Plenum, New York, 1993, pp. 237-255; (e) J. Xu, S. Cai, X. Li, J. Dong, J. Ding, Z. Chen, Statistical two-dimensional correlation spectroscopy of urine and serum from metabolomics data, Chemom. Intell. Lab. Syst. 112 (2012) 33-40.[4] (a) L.T. Letendre, W. McNavage, C. Pibel, D.K. Kuo, H.L. Dai, Time-resolved FTIR emission spectroscopy of transient radicals, J. Chin. Chem. Soc. 52 (2005) 677-686; (b) W. McNavage, H.L. Dai, Two-dimensional cross-spectral correlation analysis and its application to time-resolved Fourier transform emission spectra of transient radicals, J. Chem. Phys. 123 (2005) 184104; (c) F. Pi, H. Shinzawa, M.A. Czarnecki, M. Iwahashi, M. Suzuki, Y. Ozaki, Selfassembling of oleic acid (cis-9,cis-12-octadecalienoic acid) in ethanol studied by time-dependent attenuated total reflectance (ATR) infrared (IR) and two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 974 (2010) 40-45; (d) C. Marcott, G.M. Story, A.E. Dowrey, I. Noda, in: C.L. Wilkins (Ed.), Enhancement of Chemical Information through Computer-Assisted Examination of Spectral Variations, vol. 4, Computer-Enhanced Analytical Spectroscopy, Plenum, New York, 1993, pp. 237-255; (e) J. Xu, S. Cai, X. Li, J. Dong, J. Ding, Z. Chen, Statistical two-dimensional correlation spectroscopy of urine and serum from metabolomics data, Chemom. Intell. Lab. Syst. 112 (2012) 33-40.

    5. [5] (a) Y. Wu, J.H. Jiang, Y. Ozaki, A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy, J. Phys. Chem. A 106 (2002) 2422-2429; (b) Y. Wu, F. Meersman, Y. Ozaki, A novel application of hybrid two-dimensional correlation infrared spectroscopy: exploration of the reversibility of the pressureand temperature-induced phase separation of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) in aqueous solution, Macromolecules 39 (2006) 1182-1188; (c) T.J. Kamerzell, C.R. Middaugh, Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability, Biochemistry 46 (2007) 9762-9773; (d) G.M. Kirwan, D.I. Fernandez, J.O. Niere, M.J. Adams, General and hybrid correlation nuclear magnetic resonance analysis of phosphorous in Phytophthora palmivora, Anal. Biochem. 429 (2012) 1-7; (e) W. Zhang, R. Liu, W. Zhang, H. Jia, K. Xu, Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing, Biomed. Opt. Expr. 4 (2013) 789-803.[5] (a) Y. Wu, J.H. Jiang, Y. Ozaki, A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy, J. Phys. Chem. A 106 (2002) 2422-2429; (b) Y. Wu, F. Meersman, Y. Ozaki, A novel application of hybrid two-dimensional correlation infrared spectroscopy: exploration of the reversibility of the pressureand temperature-induced phase separation of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) in aqueous solution, Macromolecules 39 (2006) 1182-1188; (c) T.J. Kamerzell, C.R. Middaugh, Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability, Biochemistry 46 (2007) 9762-9773; (d) G.M. Kirwan, D.I. Fernandez, J.O. Niere, M.J. Adams, General and hybrid correlation nuclear magnetic resonance analysis of phosphorous in Phytophthora palmivora, Anal. Biochem. 429 (2012) 1-7; (e) W. Zhang, R. Liu, W. Zhang, H. Jia, K. Xu, Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing, Biomed. Opt. Expr. 4 (2013) 789-803.

    6. [6] (a) H. Shinzawa, K. Awa, T. Okumura, S. Morita, M. Otsuka, Y. Ozaki, H. Sato, Raman imaging analysis of pharmaceutical tablets by two-dimensional (2D) correlation spectroscopy, Vib. Spectrosc. 51 (2009) 125-131; (b) H. Shinzawa, S. Morita, K. Awa, et al., Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy, Appl. Spectrosc. 63 (2009) 501-506; (c) H. Shinzawa, T. Genkawa, W. Kanematsu, Pressure-induced association of oleic acid (OA) under varying temperature studied by multiple-perturbation two-dimensional (2D) IR correlation spectroscopy, J. Mol. Struct. 1028 (2012) 164-169; (d) H. Shinzawa, M. Nishida, W. Kanematsu, et al., Parallel factor (PARAFAC) kernel analysis of temperature-and composition-dependent NMR spectra of poly(lactic acid) nanocomposites, Analyst 137 (2012) 1913-1921; (e) H. Shinzawa, K. Awa, I. Noda, Y. Ozaki, Multiple-perturbation two-dimensional near-infrared correlation study of time-dependent water absorption behavior of cellulose affected by pressure, Appl. Spectrosc. 67 (2013) 163-170.[6] (a) H. Shinzawa, K. Awa, T. Okumura, S. Morita, M. Otsuka, Y. Ozaki, H. Sato, Raman imaging analysis of pharmaceutical tablets by two-dimensional (2D) correlation spectroscopy, Vib. Spectrosc. 51 (2009) 125-131; (b) H. Shinzawa, S. Morita, K. Awa, et al., Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy, Appl. Spectrosc. 63 (2009) 501-506; (c) H. Shinzawa, T. Genkawa, W. Kanematsu, Pressure-induced association of oleic acid (OA) under varying temperature studied by multiple-perturbation two-dimensional (2D) IR correlation spectroscopy, J. Mol. Struct. 1028 (2012) 164-169; (d) H. Shinzawa, M. Nishida, W. Kanematsu, et al., Parallel factor (PARAFAC) kernel analysis of temperature-and composition-dependent NMR spectra of poly(lactic acid) nanocomposites, Analyst 137 (2012) 1913-1921; (e) H. Shinzawa, K. Awa, I. Noda, Y. Ozaki, Multiple-perturbation two-dimensional near-infrared correlation study of time-dependent water absorption behavior of cellulose affected by pressure, Appl. Spectrosc. 67 (2013) 163-170.

    7. [7] (a) J. Qi, H. Li, K. Huang, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy and its application in probing intermolecular interactions, Appl. Spectrosc. 61 (2007) 1359-1365; (b) J. Qi, K. Huang, X. Gao, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy: application in probing lanthanide ions interactions with organic ligands in solution mixture, J. Mol. Struct. 883-884 (2008) 116-123; (c) Y. Liu, C. Zhang, S. Liu, et al., Modified orthogonal sample design scheme to probe intermolecular interactions, J. Mol. Struct. 883-884 (2008) 124-128; (d) C. Zhang, K. Huang, H. Li, et al., Double orthogonal sample design scheme and corresponding basic patterns in two-dimensional correlation spectra for probing subtle spectral variations caused by intermolecular interactions, J. Phys. Chem. A 113 (2009) 12142-12156; (e) X. Li, Q. Pan, J. Chen, et al., Asynchronous orthogonal sample design scheme for two-dimensional correlation spectroscopy (2D-COS) and its application in probing intermolecular interactions from overlapping infrared (IR) bands, Appl. Spectrosc. 65 (2011) 901-917; (f) J. Chen, Q. Bi, S. Liu, et al., Double asynchronous sample design scheme for probing intermolecular interactions, J. Phys. Chem. A 116 (2012) 10904-10916; (g) X. Li, S. Liu, J. Chen, et al., The influence of changing the sequence of concentration series on the 2D asynchronous spectroscopy generated by the asynchronous orthogonal sample design (AOSD) approach, Vib. Spectrosc. 60 (2012) 212-216; (h) X. Li, Q. Bi, S. Liu, et al., Improvement of the sensitivity of the twodimensional asynchronous spectroscopy based on the ASOD approach by using a modified reference spectrum, J. Mol. Struct. 1034 (2013) 101-111.[7] (a) J. Qi, H. Li, K. Huang, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy and its application in probing intermolecular interactions, Appl. Spectrosc. 61 (2007) 1359-1365; (b) J. Qi, K. Huang, X. Gao, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy: application in probing lanthanide ions interactions with organic ligands in solution mixture, J. Mol. Struct. 883-884 (2008) 116-123; (c) Y. Liu, C. Zhang, S. Liu, et al., Modified orthogonal sample design scheme to probe intermolecular interactions, J. Mol. Struct. 883-884 (2008) 124-128; (d) C. Zhang, K. Huang, H. Li, et al., Double orthogonal sample design scheme and corresponding basic patterns in two-dimensional correlation spectra for probing subtle spectral variations caused by intermolecular interactions, J. Phys. Chem. A 113 (2009) 12142-12156; (e) X. Li, Q. Pan, J. Chen, et al., Asynchronous orthogonal sample design scheme for two-dimensional correlation spectroscopy (2D-COS) and its application in probing intermolecular interactions from overlapping infrared (IR) bands, Appl. Spectrosc. 65 (2011) 901-917; (f) J. Chen, Q. Bi, S. Liu, et al., Double asynchronous sample design scheme for probing intermolecular interactions, J. Phys. Chem. A 116 (2012) 10904-10916; (g) X. Li, S. Liu, J. Chen, et al., The influence of changing the sequence of concentration series on the 2D asynchronous spectroscopy generated by the asynchronous orthogonal sample design (AOSD) approach, Vib. Spectrosc. 60 (2012) 212-216; (h) X. Li, Q. Bi, S. Liu, et al., Improvement of the sensitivity of the twodimensional asynchronous spectroscopy based on the ASOD approach by using a modified reference spectrum, J. Mol. Struct. 1034 (2013) 101-111.

    8. [8] (a) I. Noda, Projection two-dimensional correlation analysis, J. Mol. Struct. 974 (2010) 116-126; (b) L. Zhang, I. Noda, Y. Wu, Concatenated two-dimensional correlation analysis: a new possibility for generalized two-dimensional correlation spectroscopy and its application to the examination of process reversibility, Appl. Spectrosc. 64 (2010) 343-350; (c) L. Zhang, I. Noda, Y. Wu, An application of concatenated 2D correlation spectroscopy: exploration of the reversibility of the temperature-induced hydration variation of poly(N-isopropylmethacrylamide) in aqueous solution, J. Mol. Struct. 974 (2010) 80-87; (d) M. Thomas, H. Richardson, Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal 40-n-octyl-cyanobiphenyl (8CB), Vib. Spectrosc. 24 (2000) 137-146; (e) S. Morita, H. Shinzawa, I. Noda, Y. Ozaki, Perturbation-correlation movingwindow two-dimensional correlation spectroscopy, Appl. Spectrosc. 60 (2006) 398-406; (f) S.R. Ryu, I. Noda, C.H. Lee, et al., Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes, Appl. Spectrosc. 65 (2011) 359-368; (g) I. Noda, Close-up view on the inner workings of two-dimensional correlation spectroscopy, Vib. Spectrosc. 60 (2012) 146-153; (h) I. Noda, Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species, J. Mol. Struct. 1069 (2014) 60-72; (i) S. Š ašić, A. Muszynski, Y. Ozaki, A new possibility of the generalized twodimensional correlation spectroscopy. 1. Sample-sample correlation spectroscopy, J. Phys. Chem. A 104 (2000) 6380-6387; (j) Y.M. Jung, S.B. Kim, I. Noda, New approach to generalized two-dimensional correlation spectroscopy. II: Eigenvalue manipulation transformation (EMT) for noise suppression, Appl. Spectrosc. 57 (2003) 557-563; (k) I. Noda, Two-dimensional correlation analysis of unevenly spaced spectral data, Appl. Spectrosc. 57 (2003) 1049-1051; (l) I. Noda, Scaling techniques to enhance two-dimensional correlation spectra, J. Mol. Struct. 883-884 (2008) 216-227; (m) Y. Wu, I. Noda, Extension of quadrature orthogonal signal corrected twodimensional (QOSC 2D) correlation spectroscopy I: principal component analysis based QOSC 2D, Appl. Spectrosc. 61 (2007) 1040-1044; (m) I. Noda, Recent mathematical developments in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 201-204; (o) S. Morita, Y. Ozaki, I. Noda, Global phase angle description of generalized twodimensional correlation spectroscopy: 1. theory and its simulation for practical use, Appl. Spectrosc. 55 (2001) 1618-1621; (p) I. Noda, Kernel analysis for two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 34-40.[8] (a) I. Noda, Projection two-dimensional correlation analysis, J. Mol. Struct. 974 (2010) 116-126; (b) L. Zhang, I. Noda, Y. Wu, Concatenated two-dimensional correlation analysis: a new possibility for generalized two-dimensional correlation spectroscopy and its application to the examination of process reversibility, Appl. Spectrosc. 64 (2010) 343-350; (c) L. Zhang, I. Noda, Y. Wu, An application of concatenated 2D correlation spectroscopy: exploration of the reversibility of the temperature-induced hydration variation of poly(N-isopropylmethacrylamide) in aqueous solution, J. Mol. Struct. 974 (2010) 80-87; (d) M. Thomas, H. Richardson, Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal 40-n-octyl-cyanobiphenyl (8CB), Vib. Spectrosc. 24 (2000) 137-146; (e) S. Morita, H. Shinzawa, I. Noda, Y. Ozaki, Perturbation-correlation movingwindow two-dimensional correlation spectroscopy, Appl. Spectrosc. 60 (2006) 398-406; (f) S.R. Ryu, I. Noda, C.H. Lee, et al., Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes, Appl. Spectrosc. 65 (2011) 359-368; (g) I. Noda, Close-up view on the inner workings of two-dimensional correlation spectroscopy, Vib. Spectrosc. 60 (2012) 146-153; (h) I. Noda, Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species, J. Mol. Struct. 1069 (2014) 60-72; (i) S. Š ašić, A. Muszynski, Y. Ozaki, A new possibility of the generalized twodimensional correlation spectroscopy. 1. Sample-sample correlation spectroscopy, J. Phys. Chem. A 104 (2000) 6380-6387; (j) Y.M. Jung, S.B. Kim, I. Noda, New approach to generalized two-dimensional correlation spectroscopy. II: Eigenvalue manipulation transformation (EMT) for noise suppression, Appl. Spectrosc. 57 (2003) 557-563; (k) I. Noda, Two-dimensional correlation analysis of unevenly spaced spectral data, Appl. Spectrosc. 57 (2003) 1049-1051; (l) I. Noda, Scaling techniques to enhance two-dimensional correlation spectra, J. Mol. Struct. 883-884 (2008) 216-227; (m) Y. Wu, I. Noda, Extension of quadrature orthogonal signal corrected twodimensional (QOSC 2D) correlation spectroscopy I: principal component analysis based QOSC 2D, Appl. Spectrosc. 61 (2007) 1040-1044; (m) I. Noda, Recent mathematical developments in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 201-204; (o) S. Morita, Y. Ozaki, I. Noda, Global phase angle description of generalized twodimensional correlation spectroscopy: 1. theory and its simulation for practical use, Appl. Spectrosc. 55 (2001) 1618-1621; (p) I. Noda, Kernel analysis for two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 34-40.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1031
  • HTML全文浏览量:  62
文章相关
  • 发布日期:  2014-10-08
  • 收稿日期:  2014-08-08
  • 网络出版日期:  2014-09-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章