基于掺Zn氮化碳和BiVO4构建Z型光催化系统实现完全分解水

秦臻 房文健 刘军营 韦之栋 江治 上官文峰

引用本文: 秦臻,  房文健,  刘军营,  韦之栋,  江治,  上官文峰. 基于掺Zn氮化碳和BiVO4构建Z型光催化系统实现完全分解水[J]. 催化学报, 2018, 39(3): 472-478. doi: 10.1016/S1872-2067(17)62961-9 shu
Citation:  Zhen Qin,  Wenjian Fang,  Junying Liu,  Zhidong Wei,  Zhi Jiang,  Wenfeng Shangguan. Zinc-doped g-C3N4/BiVO4 as a Z-scheme photocatalyst system for water splitting under visible light[J]. Chinese Journal of Catalysis, 2018, 39(3): 472-478. doi: 10.1016/S1872-2067(17)62961-9 shu

基于掺Zn氮化碳和BiVO4构建Z型光催化系统实现完全分解水

  • 基金项目:

    国家自然科学基金(21773153).

摘要: 随着现代工业的迅猛发展和化石燃料的过量使用,全球范围内能源和环境问题日益严峻,因此利用丰富的太阳光能分解水来直接制取清洁的氢气具有诱人的应用前景.目前,聚合物半导体石墨相氮化碳(g-C3N4)因其廉价、稳定、不含金属组分和独特的电子能带结构已被广泛应用于光解水产氢研究.然而,氮化碳具有结晶度差、光生载流子易复合的缺点.众所周知,Z型体系可以很好地减少电子和空穴的复合问题.同时,催化剂只需分别满足光解水过程的一端,这使得半导体光催化剂的选择非常丰富,可以大大拓宽材料体系.因此,将g-C3N4运用到Z型体系中的研究得到了广泛关注.然而,这些研究多集中在如何增强g-C3N4的产氢能力方面,对实现水的完全分解的研究鲜见报道.
本实验设计了这样一种Z型体系:使用掺Zn的g-C3N4作为产氢端,BiVO4作为产氧端,Fe3+/Fe2+作为氧化还原对.实验结果表明,该体系可以在全波段下实现水的完全分解(氢氧比为2:1),并且保持相当高的稳定性.
实验所使用的氮化碳为固相法烧结尿素制得,Zn的掺杂采用浸渍法,同时通过水热法合成BiVO4,使用Pt作为助催化剂.通过搭建含有不同组成成分的Z型体系,将它们的性能和表征结果进行比较分析.
通过XRD,UV-Vis,SEM和XPS等测试手段对催化剂进行表征.XRD分析结果表明成功合成了掺杂Zn的石墨相氮化碳.UV-Vis则显示随着Zn浓度的提高,吸收边发生变化.通过改变掺杂Zn的浓度,得到了能够实现完全分解水的Z型体系,其最佳掺杂比例为:ZnCl2和氮化碳的质量比为1:10.为了排除单催化剂和Pt颗粒对完全分解水性能的影响,分别作了单独产氢端、单独产氧端、预负载Pt和光沉积Pt的性能测试.从SEM中没有发现g-C3N4和BiVO4的异质结结构.这些结果表明所搭建的是典型的利用氧化还原离子对为中间电子传输载体的Z型体系,经长达12 h的持续测试证明其具有较高的稳定性.
为了研究Zn在构建Z型中所起的作用,分别采用文献中报道的原位和浸渍法实现Zn的掺杂.对这两种掺杂方式的性能测试表明,只有采用浸渍法时,所构建的Z型体系具有完全分解水的能力.对这两种方法得到的掺Zn氮化碳进行表面化学组成和价态(XPS)的分析.结果显示,两种掺杂方法都可以通过形成Zn=N键的形式实现Zn的掺杂,但浸渍法使Zn在g-C3N4表面分布更均匀,同时对氮化碳原本三嗪环的破坏较小,因此具有更好的还原能力,可以与BiVO4匹配以构成Z型体系.
实验通过采用掺杂Zn的氮化碳作为产氢催化剂,BiVO4作为产氧催化剂,Fe3+/Fe2+作为氧化还原中间体,构建了典型的Z型体系.该体系在Zn的掺杂浓度为10%时能够实现长时间稳定的完全分解水.

English

    1. [1] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.

    2. [2] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 2009, 25, 10397-10401.

    3. [3] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76-80.

    4. [4] X. C. Wang, X. F. Chen, A. Thomas, X. Z. Fu, M. Antonietti, Adv. Mater., 2009, 21, 1609-1612.

    5. [5] X. F. Chen, J. S. Zhang, X. Z. Fu, M. Antonietti, X. C. Wang, J. Am. Chem. Soc., 2009, 131, 11658-11659.

    6. [6] S. C. Yan, S. B. Lü, Z. S. Li, Z. G. Zou, Dalton Trans., 2010, 39, 1488-1491.

    7. [7] F. Dong, L. W. Wu, Y. J. Sun, M. Fu, Z. B. Wu, S. C. Lee, J. Mater. Chem., 2011, 21, 15171-15174.

    8. [8] L. T. Ma, H. Q. Fan, M. M. Li, H. L. Tian, J. W. Fang, G. Z. Dong, J. Mater. Chem. A, 2015, 3, 22404-22412.

    9. [9] C. C. Han, L. Ge, C. F. Chen, Y. J. Li, X. L. Xiao, Y. N. Zhang, L. L. Guo, Appl. Catal. B, 2014, 147, 546-553.

    10. [10] Y. M. He, L. H. Zhang, X. X. Wang, Y. Wu, H. J. Lin, L. H. Zhao, W. Z. Weng, H. L. Wan, M. H. Fan, RSC Adv., 2014, 4, 13610-13619.

    11. [11] B. Yue, Q. Y. Li, H. Iwai, T. Kako, J. P. Ye, Sci. Technol. Adv. Mater., 2011, 12, 034401/1-034401/7.

    12. [12] A. W. Wang, C. D. Wang, L. Fu, W. N. Wong-Ng, Y. C. Lan, Nano-Micro Lett., 2017, 9, 47.

    13. [13] L. Ge, F. Zuo, J. K. Liu, Q. Ma, C. Wang, D. Z. Sun, L. Bartels, P. Y. Feng, J. Phys. Chem. C, 2012, 116, 13708-13714.

    14. [14] J. G. Yu, S. H. Wang, J. X. Low, W. Xiao, Phys. Chem. Chem. phys., 2013, 15, 16883-16890.

    15. [15] S. F. Chen, Y. F. Hu, S. G. Meng, X. L. Fu, Appl. Catal. B, 2014, 150-151, 564-573.

    16. [16] H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Ind. Eng. Chem. Res., 2014, 53, 8018-8025.

    17. [17] X. X. Wang, J. Chen, X. J. Guan, L. J. Guo, Int. J. Hydrogen Energy, 2015, 40, 7546-7552.

    18. [18] R. Q. Ye, H. B. Fang, Y. Z. Zheng, N. Li, Y. Wang, X. Tao, ACS Appl. Mater. Interfaces, 2016, 8, 13879-13889.

    19. [19] K. Maeda, ACS Catal., 2013, 3, 1486-1503.

    20. [20] Q. Wang, T. Hisatomi, M. Katayama, T. Takata, T. Minegishi, A. Kudo, T. Yamada, K. Domen, Faraday Discuss., 2017, 197, 491-504.

    21. [21] C. J. Li, S. P. Wang, T. Wang, Y. J. Wei, P. Zhang, J. L. Gong, Small, 2014, 10, 2783-2790, 2741.

    22. [22] N. Tian, H. W. Huang, Y. He, Y. X. Guo, T. R. Zhang, Y. H. Zhang, Dalton Trans., 2015, 44, 4297-4307.

    23. [23] J. H. Zhang, F. Z. Ren, M. S. Deng, Y. X. Wang, Phys. Chem. Chem. Phys., 2015, 17, 10218-10226.

    24. [24] R. Z. Sun, Q. M. Shi, M. Zhang, L. X. Xie, J. S. Chen, X. M. Yang, M. X. Chen, W. R. Zhao, J. Alloys Compounds, 2017, 714, 619-626.

    25. [25] Y. Wang, J. Y. Sun, J. Li, X. Zhao, Langmuir, 2017, 33, 4694-4701.

    26. [26] W. J. Fang, J. Y. Liu, L. Yu, Z. Jiang, W. F. Shangguan, Appl. Catal. B, 2017, 209, 631-636.

    27. [27] S. Obregón, A. Caballero, G. Colón, Appl. Catal. B, 2012, 117-118, 59-66.

    28. [28] H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, J. Mater. Chem. A, 2013, 1, 12327.

    29. [29] Y. C. Bao, K. Z. Chen, Nano-Micro Lett., 2015, 8, 182-192.

    30. [30] N. Zhang, C. Han, Y. J. Xu, J. J. Foley, D. T. Zhang, J. Codrington, S. K. Gray, Y. G. Sun, Nat. Photonics, 2016, 10, 473-482.

    31. [31] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem., 2008, 18, 4893-4908.

    32. [32] E. Raymundo-Pinero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, R. Schlögl, Carbon, 2002, 40, 597-608.

    33. [33] M. Futsuhara, K. Yoshioka, O. Takai, Thin Solid Films, 1998, 322, 274-281.

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  2747
  • HTML全文浏览量:  71
文章相关
  • 收稿日期:  2017-09-28
  • 修回日期:  2017-10-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章