One-step Production of Continuous Supercapacitor Fibers for a Flexible Power Textile
English
One-step Production of Continuous Supercapacitor Fibers for a Flexible Power Textile
-
-
-
[1]
Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 2011, 4, 5060- 5067. doi: 10.1039/c1ee02421c
-
[2]
Chen, J.; Huang, Y.; Zhang, N.; Zou, H.; Liu, R.; Tao, C.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138. doi: 10.1038/nenergy.2016.138
-
[3]
Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2014, 2, 10776-10787. doi: 10.1039/c4ta00203b
-
[4]
Bao, L.; Xu, X.; Zuo, Y.; Zhang, J.; Liu, F.; Yang Y.; Xu, F.; Sun, X.; Peng, H. Piezoluminescent devices by designing array structures. Science Bulletin 64 (2019) 151–157. https://doi.org/10.1016/j.scib.2019.01.001 doi: 10.1016/j.scib.2019.01.001
-
[5]
Hu, L.; Wu, H.; Mantia, F. La; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010, 4, 5843- 5848. doi: 10.1021/nn1018158
-
[6]
Kim, S. H.; Choi, K. H.; Cho. S. J.; Choi, S.; Park, S.; Lee, S. Y. Printable solid-state lithium-ion batteries: A new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett. 2015, 15, 5168-5177. doi: 10.1021/acs.nanolett.5b01394
-
[7]
Yu, D.; Qian, Q.; Wei, L.; Jiang, W.; Goh, K.; Wei, J.; Zhang, J.; Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647-662. doi: 10.1039/C4CS00286E
-
[8]
Ren, J.; Zhang, Y.; Bai, W.; Chen, X.; Zhang, Z.; Fang, X.; Weng, W.; Wang, Y.; Peng, H. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 2014, 126, 7864-7869.
-
[9]
Chen, X.; Qiu, L.; Ren, J.; Guan, G.; Lin, H.; Zhang, Z.; Chen, P.; Wang, Y.; Peng, H. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 2013, 25, 6436-6441. doi: 10.1002/adma.v25.44
-
[10]
Wen, Z.; Yeh, M.-H.; Guo, H.; Wang, J.; Zi, Y.; Xu, W.; Deng, J.; Zhu, L.; Wang, X.; Hu, C.; Zhu, L.; Sun, X.; Wang, Z. L. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097. doi: 10.1126/sciadv.1600097
-
[11]
Lee, J. A.; Shin, M. K.; Kim, S. H.; Cho, H. U.; Spinks, G. M.; Wallace, G. G.; Lima, M. D.; Lepró, X.; Kozlov, M. E.; Baughman, R. H.; Kim, S. J. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 2013, 4, 1970. doi: 10.1038/ncomms2970
-
[12]
Yuan, D.; Li, B.; Cheng, J.; Guan, Q.; Wang, Z.; Ni, W.; Li, C.; Liu, H.; Wang, B. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation. J. Mater. Chem. A 2016, 4, 11616-11624. doi: 10.1039/C6TA04081K
-
[13]
Cheng, X.; Zhang, J.; Ren, J.; Liu, N.; Chen, P.; Zhang, Y.; Deng, J.; Wang, Y.; Peng, H. Design of a hierarchical ternary hybrid for a fiber-shaped asymmetric supercapacitor with high volumetric energy density. J. Phys. Chem. C 2016, 120, 9685-9691.
-
[14]
Zhang, D.; Miao, M.; Niu, H.; Wei, Z. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 2014, 8, 4571-4579. doi: 10.1021/nn5001386
-
[15]
Ericson, L. M.; Fan, H.; Peng, H.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y.; Booker, R.; Vavro, J.; Guthy, C.; Parra-Vasquez, A. N. G.; Kim, M. J.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W. E.; Pasquali, M.; Hwang, W. F.; Hauge, R. H.; Fischer, J. E.; Smalley, R. E. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447-1450. doi: 10.1126/science.1101398
-
[16]
Meng, Q.; Wu, H.; Meng, Y.; Xie, K.; Wei, Z.; Guo, Z. High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100-4106. doi: 10.1002/adma.v26.24
-
[17]
Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754
-
[18]
Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci. Rep. 2012, 2, 613. doi: 10.1038/srep00613
-
[19]
Xu, T.; Ding, X.; Liang, Y.; Zhao, Y.; Chen, N.; Qu, L. Direct spinning of fiber supercapacitor. Nanoscale 2016, 8, 12113-12117. doi: 10.1039/C6NR03116A
-
[20]
Lima, M. D.; Fang, S.; Lepró, X.; Lewis, C.; Ovalle-Robles, R.; Carretero-González, J.; Castillo-Martínez, E.; Kozlov, M. E.; Oh, J.; Rawat, N.; Haines, C. S.; Haque, M. H.; Aare, V.; Stoughton, S.; Zakhidov, A. A.; Baughman, R. H. Biscrolling nanotube sheets and functional guests into yarns. Science 2011, 331, 51-55. doi: 10.1126/science.1195912
-
[21]
Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 2013, 25, 1494-1498. doi: 10.1002/adma.v25.10
-
[22]
Xu, H.; Hu, X.; Sun, Y.; Yang, H.; Liu, X.; Huang, Y. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 2015, 8, 1148-1158. doi: 10.1007/s12274-014-0595-8
-
[23]
Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 2013, 52, 13453-13487. doi: 10.1002/anie.201307619
-
[24]
Fu, X.; Li, Z.; Xu, L.; Liao, M.; Sun, H.; Xie, S.; Sun, X., Wang, B.; Peng, H. Sci. China Mater. Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. 2019, 62, 955-964.
-
[25]
Chodankar, N. R.; Dubal, D.P.; Gund, G. S.; CD Lokhande. Flexible all-solid-state MnO2 thin films based symmetric supercapacitors. Electrochim. Acta 2015, 165, 338-347. doi: 10.1016/j.electacta.2015.02.246
-
[26]
Wu, Z. S.; Parvez, K.; Feng, X.; Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487. doi: 10.1038/ncomms3487
-
[27]
Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555-562. doi: 10.1038/nnano.2014.93
-
[28]
Wang, B.; Fang, X.; Sun, H.; He, S.; Ren, J.; Zhang, Y.; Peng, H. Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv. Mater. 2015, 27, 7854-7860. doi: 10.1002/adma.201503441
-
[29]
Meng, Q.; Wang, K.; Guo, W.; Fang, J.; Wei, Z.; She, X. Thread-like supercapacitors based on one-step spun nanocomposite yarns. Small 2014, 10, 3187-3193. doi: 10.1002/smll.v10.15
-
[30]
Zhang, S.; Koziol, K. K. K.; Kinloch, I. A.; Windle, A. H. macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 2008, 4, 1217-1222. doi: 10.1002/smll.v4:8
-
[31]
Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G. G. Superelastic hybrid cnt/graphene fibers for wearable energy storage. Adv. Energy Mater. 2017, 1702047.
-
[32]
Ding, X.; Zhao, Y.; Hu, C.; Hu, Y.; Dong, Z.; Chen, N.; Zhang, Z.; Qu, L. Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J. Mater. Chem. A 2014, 2, 12355-12360. doi: 10.1039/C4TA01230E
-
[33]
Sun, G.; Liu, J.; Zhang, X.; Wang, X.; Li, H.; Yu, Y.; Huang, W.; Zhang, H.; Chen, P. fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angew. Chem. Int. Ed. 2014, 126, 12784-12580. doi: 10.1002/ange.201405325
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1601
- HTML全文浏览量: 97

下载: