Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly

Jiang-Ping Xu Jin-Tao Zhu

Citation:  Jiang-Ping Xu, Jin-Tao Zhu. Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly[J]. Chinese Journal of Polymer Science, 2019, 37(8): 744-759. doi: 10.1007/s10118-019-2294-0 shu

Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly

English


    1. [1]

      Yu, H.; Qiu, X.; Nunes, S. P.; Peinemann, K. V. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity. Nat. Commun. 2014, 5, 4110. doi: 10.1038/ncomms5110

    2. [2]

      Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Delivery Rev. 2003, 55, 403-419. doi: 10.1016/S0169-409X(02)00226-0

    3. [3]

      Pham, H. H.; Gourevich, I.; Oh, J. K.; Jonkman, J. E. N.; Kumacheva, E. A multidye nanostructured material for optical data storage and security data encryption. Adv. Mater. 2004, 16, 516-520. doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Yi, Z.; Zhang, P. B.; Liu, C. J.; Zhu, L. P. Symmetrical permeable membranes consisting of overlapped block copolymer cylindrical micelles for nanoparticle size fractionation. Macromolecules 2016, 49, 3343-3351. doi: 10.1021/acs.macromol.6b00166

    5. [5]

      Bakshi, M. S. Colloidal micelles of block copolymers as nanoreactors, templates for gold nanoparticles, and vehicles for biomedical applications. Adv. Colloid Interface Sci. 2014, 213, 1-20. doi: 10.1016/j.cis.2014.08.001

    6. [6]

      Wang, W. C.; Peng, C.; Shi, K.; Pan, Y. X.; Zhang, H. S.; Ji, X. L. Double emulsion droplets as microreactors for synthesis of magnetic macroporous polymer beads. Chinese J. Polym. Sci. 2014, 32, 1639-1645. doi: 10.1007/s10118-014-1543-5

    7. [7]

      Lee, J. H.; Lee, C. S.; Cho, K. Y. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles. ACS Appl. Mater. Interfaces 2014, 6, 16493-16497. doi: 10.1021/am505997s

    8. [8]

      Wang, L.; Yamauchi, Y., Facile Synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem. Mater. 2009, 21, 3562-3569. doi: 10.1021/cm901161g

    9. [9]

      Champion, J. A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4930-4934. doi: 10.1073/pnas.0600997103

    10. [10]

      Sacanna, S.; Korpics, M.; Rodriguez, K.; Colon-Melendez, L.; Kim, S. H.; Pine, D. J.; Yi, G. R., Shaping colloids for self-assembly. Nat. Commun. 2013, 4, 1688. doi: 10.1038/ncomms2694

    11. [11]

      Chen, Q.; Bae, S. C.; Granick, S., Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381-384. doi: 10.1038/nature09713

    12. [12]

      Koh, L. B.; Rodriguez, I.; Venkatraman, S. S. The effect of topography of polymer surfaces on platelet adhesion. Biomaterials 2010, 31, 1533-1545. doi: 10.1016/j.biomaterials.2009.11.022

    13. [13]

      Shen, L.; Zhu, J. Heterogeneous surfaces to repel proteins. Adv. Colloid Interface Sci. 2016, 228, 40-54. doi: 10.1016/j.cis.2015.11.008

    14. [14]

      Shezad, K.; Zhang, K.; Hussain, M.; Dong, H.; He, C.; Gong, X.; Xie, X.; Zhu, J.; Shen, L. Surface roughness modulates diffusion and fibrillation of amyloid-beta peptide. Langmuir 2016, 32, 8238-8244. doi: 10.1021/acs.langmuir.6b01756

    15. [15]

      Wang, K.; Liu, L.; Xie, J.; Shen, L.; Tao, J.; Zhu, J. facile strategy to generate aligned polymer nanofibers: effects on cell adhesion. ACS Appl. Mater. Interfaces 2018, 10, 1566-1574. doi: 10.1021/acsami.7b16057

    16. [16]

      Kawaguchi, H., Functional polymer microspheres. Prog. Polym. Sci. 2000, 25, 1171-1210. doi: 10.1016/S0079-6700(00)00024-1

    17. [17]

      Riess, G.; Labbe, C. Block copolymers in emulsion and dispersion polymerization. Macromol. Rapid Commun. 2004, 25, 401-435. doi: 10.1002/(ISSN)1521-3927

    18. [18]

      Tanaka, T.; Komatsu, Y.; Fujibayashi, T.; Minami, H.; Okubo, M., A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles. Langmuir 2010, 26, 3848-3853. doi: 10.1021/la903309t

    19. [19]

      Kim, S. H.; Hollingsworth, A. D.; Sacanna, S.; Chang, S. J.; Lee, G.; Pine, D. J.; Yi, G. R. Synthesis and assembly of colloidal particles with sticky dimples. J. Am. Chem. Soc. 2012, 134, 16115-16118. doi: 10.1021/ja305865w

    20. [20]

      Andala, D. M.; Shin, S. H. R.; Lee, H. Y.; Bishop, K. J. M. Templated synthesis of amphiphilic nanoparticles at the liquid-liquid interface. ACS Nano 2012, 6, 1044-1050. doi: 10.1021/nn202556b

    21. [21]

      Luo, Z.; Liu, B. Shape-tunable colloids from structured liquid droplet templates. Angew. Chem., Int. Ed. 2018, 57, 4940-4945. doi: 10.1002/anie.201800587

    22. [22]

      Wang, W.; Zhang, M. J.; Chu, L. Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc. Chem. Res. 2014, 47, 373-384. doi: 10.1021/ar4001263

    23. [23]

      Zhu, J.; Hayward, R. C. Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial instabilities. J. Am. Chem. Soc. 2008, 130, 7496-7502. doi: 10.1021/ja801268e

    24. [24]

      Zhu, J.; Hayward, R. C. Hierarchically structured microparticles formed by interfacial instabilities of emulsion droplets containing amphiphilic block copolymers. Angew. Chem., Int. Ed. 2008, 47, 2113-2116. doi: 10.1002/(ISSN)1521-3773

    25. [25]

      Shi, A. C.; Li, B. Self-assembly of diblock copolymers under confinement. Soft Matter 2013, 9, 1398-1413. doi: 10.1039/C2SM27031E

    26. [26]

      Yan, N.; Zhu, Y.; Jiang, W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018, 54, 13183-13195. doi: 10.1039/C8CC05812A

    27. [27]

      Zhang, L. B.; Wang, K.; Zhu, J. T. Research progress on confined assembly of block copolymers in china. Acta Polymerica Sinica (in Chinese) 2017, 1261-1276.

    28. [28]

      Jeon, S. J.; Yi, G. R.; Yang, S. M. Cooperative assembly of block copolymers with deformable interfaces: toward nanostructured particles. Adv. Mater. 2008, 20, 4103-4108. doi: 10.1002/adma.v20:21

    29. [29]

      Klinger, D.; Wang, C. X.; Connal, L. A.; Audus, D. J.; Jang, S. G.; Kraemer, S.; Killops, K. L.; Fredrickson, G. H.; Kramer, E. J.; Hawker, C. J. A facile synthesis of dynamic, shape-changing polymer particles. Angew. Chem. Int. Ed. 2014, 53, 7018-7022. doi: 10.1002/anie.201400183

    30. [30]

      Ku, K. H.; Shin, J. M.; Kim, M. P.; Lee, C. H.; Seo, M. K.; Yi, G. R.; Jang, S. G.; Kim, B. J. Size-controlled nanoparticle-guided assembly of block copolymers for convex lens-shaped particles. J. Am. Chem. Soc. 2014, 136, 9982-9989. doi: 10.1021/ja502075f

    31. [31]

      Jin, Z.; Fan, H. Self-assembly of nanostructured block copolymer nanoparticles. Soft Matter 2014, 10, 9212-9219. doi: 10.1039/C4SM02064B

    32. [32]

      Chi, P.; Wang, Z.; Li, B.; Shi, A. C. Soft confinement-induced morphologies of diblock copolymers. Langmuir 2011, 27, 11683-11689. doi: 10.1021/la202448c

    33. [33]

      Chen, P.; Liang, H.; Shi, A. C. Origin of microstructures from confined asymmetric diblock copolymers. Macromolecules 2007, 40, 7329-7335. doi: 10.1021/ma0705164

    34. [34]

      Xiang, H. Q.; Shin, K.; Kim, T.; Moon, S. I.; McCarthy, T. J.; Russell, T. P. Block copolymers under cylindrical confinement. Macromolecules 2004, 37, 5660-5664. doi: 10.1021/ma049299m

    35. [35]

      Yu, B.; Jin, Q.; Ding, D.; Li, B.; Shi, A. C. Confinement-induced morphologies of cylinder-forming asymmetric diblock copolymers. Macromolecules 2008, 41, 4042-4054. doi: 10.1021/ma702430v

    36. [36]

      Yu, B.; Li, B.; Jin, Q.; Ding, D.; Shi, A. C. Self-assembly of symmetric diblock copolymers confined in spherical nanopores. Macromolecules 2007, 40, 9133-9142. doi: 10.1021/ma071624t

    37. [37]

      Zhu, Y.; Jiang, W. Self-assembly of diblock copolymer mixtures in confined states: A Monte Carlo study. Macromolecules 2007, 40, 2872-2881. doi: 10.1021/ma062022x

    38. [38]

      Yu, B.; Sun, P. C.; Chen, T. H.; Jin, Q. H.; Ding, D. T.; Li, B. H.; Shi, A. C. Confinement-induced novel morphologies of block copolymers. Phys. Rev. Lett. 2006, 96, 138306. doi: 10.1103/PhysRevLett.96.138306

    39. [39]

      Shin, K.; Xiang, H. Q.; Moon, S. I.; Kim, T.; McCarthy, T. J.; Russell, T. P. Curving and frustrating flatland. Science 2004, 306, 76-76. doi: 10.1126/science.1100090

    40. [40]

      Yabu, H.; Higuchi, T.; Jinnai, H. Frustrated phases: polymeric self-assemblies in a 3D confinement. Soft Matter 2014, 10, 2919-2931. doi: 10.1039/c3sm52821a

    41. [41]

      Ku, K. H.; Shin, J. M.; Yun, H.; Yi, G. R.; Jang, S. G.; Kim, B. J. Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion. Adv. Funct. Mater. 2018, 28, 1802961. doi: 10.1002/adfm.201802961

    42. [42]

      Cheng, J. Y.; Mayes, A. M.; Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 2004, 3, 823-828. doi: 10.1038/nmat1211

    43. [43]

      Gentili, D.; Valle, F.; Albonetti, C.; Liscio, F.; Cavallini, M. Self-organization of functional materials in confinement. Acc. Chem. Res. 2014, 47, 2692-2699. doi: 10.1021/ar500210d

    44. [44]

      Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M. Frustrated phases of block copolymers in nanoparticles. Angew. Chem., Int. Ed. 2008, 47, 8044-8046. doi: 10.1002/anie.v47:42

    45. [45]

      Jiang, W. B.; Ji, Y. Y.; Lang, W. C.; Li, S. B.; Wang, X. H. Surface-induced morphologies of ABC star triblock copolymer in spherical cavities. Chinese J. Polym. Sci. 2015, 33, 1503-1515. doi: 10.1007/s10118-015-1706-z

    46. [46]

      Qiu, W.-J.; Li, S. B.; Ji, Y. Y.; Zhang, L. X. Self-assembly of linear triblock copolymers under cylindrical nanopore confinements. Chinese J. Polym. Sci. 2013, 31, 122-138. doi: 10.1007/s10118-013-1183-1

    47. [47]

      He, X. H.; Song, M.; Liang, H. J.; Pan, C. Y. Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation. J. Chem. Phys. 2001, 114, 10510-10513. doi: 10.1063/1.1372189

    48. [48]

      Arsenault, A. C.; Rider, D. A.; Tétreault, N.; Chen, J. I. L.; Coombs, N.; Ozin, G. A.; Manners, I. Block copolymers under periodic, strong three-dimensional confinement. J. Am. Chem. Soc. 2005, 127, 9954-9955. doi: 10.1021/ja052483i

    49. [49]

      Chen, P.; Liang, H.; Shi, A. C. Microstructures of a cylinder-forming diblock copolymer under spherical confinement. Macromolecules 2008, 41, 8938-8943. doi: 10.1021/ma800443h

    50. [50]

      Mei, S. L.; Jin, Z. X. Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 2013, 9, 322-329. doi: 10.1002/smll.201201504

    51. [51]

      Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M. Suprapolymer structures from nanostructured polymer particles. Angew. Chem. Int. Ed. 2009, 48, 5125-5128. doi: 10.1002/anie.v48:28

    52. [52]

      Yan, X.; Liu, G.; Li, Z. Preparation and phase segregation of block copolymer nanotube multiblocks. J. Am. Chem. Soc. 2004, 126, 10059-10066. doi: 10.1021/ja0479890

    53. [53]

      Zhang, K.; Gao, L.; Chen, Y. Organic-inorganic hybrid materials by self-gelation of block copolymer assembly and nanoobjects with controlled shapes thereof. Macromolecules 2007, 40, 5916-5922. doi: 10.1021/ma070780x

    54. [54]

      Wang, Y.; Li, F. B. An emerging pore-making strategy: Confined swelling-induced pore generation in block copolymer materials. Adv. Mater. 2011, 23, 2134-2148. doi: 10.1002/adma.v23.19

    55. [55]

      Nandan, B.; Horechyy, A. Hairy core-shell polymer nano-objects from self-assembled block copolymer structures. ACS Appl. Mater. Interfaces 2015, 7, 12539-12558. doi: 10.1021/am5075503

    56. [56]

      Walther, A.; Mueller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194-5261. doi: 10.1021/cr300089t

    57. [57]

      Walther, A.; Drechsler, M.; Rosenfeldt, S.; Harnau, L.; Ballauff, M.; Abetz, V.; Mueller, A. H. E. Self-assembly of Janus cylinders into hierarchical superstructures. J. Am. Chem. Soc. 2009, 131, 4720-4728. doi: 10.1021/ja808614q

    58. [58]

      Chen, Y. Shaped hairy polymer nanoobjects. Macromolecules 2012, 45, 2619-2631. doi: 10.1021/ma201495m

    59. [59]

      Liu, S. Q.; Deng, R. H.; Li, W. K.; Zhu, J. T. Polymer microparticles with controllable surface textures generated through interfacial instabilities of emulsion droplets. Adv. Funct. Mater. 2012, 22, 1692-1697. doi: 10.1002/adfm.v22.8

    60. [60]

      Jang, S. G.; Audus, D. J.; Klinger, D.; Krogstad, D. V.; Kim, B. J.; Cameron, A.; Kim, S.-W.; Delaney, K. T.; Hur, S. M.; Killops, K. L.; Fredrickson, G. H.; Kramer, E. J.; Hawker, C. J. Striped, ellipsoidal particles by controlled assembly of diblock copolymers. J. Am. Chem. Soc. 2013, 135, 6649-6657. doi: 10.1021/ja4019447

    61. [61]

      Deng, R.; Liang, F.; Li, W.; Yang, Z.; Zhu, J. Reversible transformation of nanostructured polymer particles. Macromolecules 2013, 46, 7012-7017. doi: 10.1021/ma401398h

    62. [62]

      Deng, R.; Liu, S.; Liang, F.; Wang, K.; Zhu, J.; Yang, Z. Polymeric Janus particles with hierarchical structures. Macromolecules 2014, 47, 3701-3707. doi: 10.1021/ma500331w

    63. [63]

      Xu, J.; Wang, K.; Li, J.; Zhou, H.; Xie, X.; Zhu, J. ABC triblock copolymer particles with tunable shape and internal structure through 3D confined assembly. Macromolecules 2015, 48, 2628-2636. doi: 10.1021/acs.macromol.5b00335

    64. [64]

      Yan, N.; Liu, H.; Zhu, Y.; Jiang, W.; Dong, Z. Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement. Macromolecules 2015, 48, 5980-5987. doi: 10.1021/acs.macromol.5b01219

    65. [65]

      Yan, N.; Zhang, Y.; He, Y.; Zhu, Y.; Jiang, W. Controllable location of inorganic nanoparticles on block copolymer self-assembled scaffolds by tailoring the entropy and enthalpy contributions. Macromolecules 2017, 50, 6771-6778. doi: 10.1021/acs.macromol.7b01076

    66. [66]

      Yan, N.; Zhu, Y.; Jiang, W. Self-assembly of AB diblock copolymer confined in a soft nano-droplet: a combination study by Monte Carlo simulation and experiment. J. Phys. Chem. B 2016, 120, 12023-12029. doi: 10.1021/acs.jpcb.6b10170

    67. [67]

      Ku, K. H.; Kim, Y.; Yi, G. R.; Jung, Y. S.; Kim, B. J. Soft patchy particles of block copolymers from interface-engineered emulsions. ACS Nano 2015, 9, 11333-11341. doi: 10.1021/acsnano.5b05058

    68. [68]

      Deng, R.; Li, H.; Liang, F.; Zhu, J.; Li, B.; Xie, X.; Yang, Z. Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules 2015, 48, 5855-5860. doi: 10.1021/acs.macromol.5b01261

    69. [69]

      Deng, R.; Li, H.; Zhu, J.; Li, B.; Liang, F.; Jia, F.; Qu, X.; Yang, Z. Janus nanoparticles of block copolymers by emulsion solvent evaporation induced assembly. Macromolecules 2016, 49, 1362-1368. doi: 10.1021/acs.macromol.5b02507

    70. [70]

      Jeon, S. J.; Yi, G. R.; Koo, C. M.; Yang, S. M. Nanostructures inside colloidal particles of block copolymer/homopolymer blends. Macromolecules 2007, 40, 8430-8439. doi: 10.1021/ma0712302

    71. [71]

      Rider, D. A.; Chen, J. I. L.; Eloi, J. C.; Arsenault, A. C.; Russell, T. P.; Ozin, G. A.; Manners, I., Controlling the morphologies of organometallic block copolymers in the 3-dimensional spatial confinement of colloidal and inverse colloidal crystals. Macromolecules 2008, 41, 2250-2259. doi: 10.1021/ma7020248

    72. [72]

      Xu, J.; Yang, Y.; Wang, K.; Wu, Y.; Zhu, J. Fabrication of convex lens-shaped polymer particles by tuning the interfacial interaction. Mater. Chem. Front. 2017, 1, 507-511. doi: 10.1039/C6QM00072J

    73. [73]

      Ku, K. H.; Yang, H.; Shin, J. M.; Kim, B. J. Aspect ratio effect of nanorod surfactants on the shape and internal morphology of block copolymer particles. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 188-192. doi: 10.1002/pola.27333

    74. [74]

      Yang, H.; Ku, K. H.; Shin, J. M.; Lee, J.; Park, C. H.; Cho, H. H.; Jang, S. G.; Kim, B. J. Engineering the shape of block copolymer particles by surface-modulated graphene quantum dots. Chem. Mater. 2016, 28, 830-837. doi: 10.1021/acs.chemmater.5b04222

    75. [75]

      Higuchi, T.; Motoyoshi, K.; Sugimori, H.; Jinnai, H.; Yabu, H.; Shimomura, M. Three-dimensional observation of confined phase-separated structures in block copolymer nanoparticles. Soft Matter 2012, 8, 3791-3797. doi: 10.1039/c2sm07139h

    76. [76]

      Jo, I. S.; Lee, S.; Zhu, J.; Shim, T. S.; Yi, G. R. Soft patchy micelles. Curr. Opin. Colloid Interface Sci. 2017, 30, 97-105. doi: 10.1016/j.cocis.2017.06.005

    77. [77]

      Tung, S. H.; Kalarickal, N. C.; Mays, J. W.; Xu, T. Hierarchical assemblies of block-copolymer-based supramolecules in thin films. Macromolecules 2008, 41, 6453-6462. doi: 10.1021/ma800726r

    78. [78]

      Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Switching supramolecular polymeric materials with multiple length scales. Science 1998, 280, 557-560. doi: 10.1126/science.280.5363.557

    79. [79]

      Li, W.; Liu, S.; Deng, R.; Wang, J.; Nie, Z.; Zhu, J. A simple route to improve inorganic nanoparticles loading efficiency in block copolymer micelles. Macromolecules 2013, 46, 2282-2291. doi: 10.1021/ma302515p

    80. [80]

      Li, W.; Liu, S.; Deng, R.; Zhu, J. Encapsulation of nanoparticles in block copolymer micellar aggregates by directed supramolecular assembly. Angew. Chem. Int. Ed. 2011, 50, 5865-5868. doi: 10.1002/anie.v50.26

    81. [81]

      Li, W.; Zhang, P.; Dai, M.; He, J.; Babu, T.; Xu, Y. L.; Deng, R.; Liang, R.; Lu, M. H.; Nie, Z. Ordering of gold nanorods in confined spaces by directed assembly. Macromolecules 2013, 46, 2241-2248. doi: 10.1021/ma400115z

    82. [82]

      Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J. M. J.; Alivisatos, A. P.; Xu, T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 2009, 8, 979-985. doi: 10.1038/nmat2565

    83. [83]

      Deng, R.; Liang, F.; Li, W.; Liu, S.; Liang, R.; Cai, M.; Yang, Z.; Zhu, J. Shaping functional nano-objects by 3D confined supramolecular assembly. Small 2013, 9, 4099-4103. doi: 10.1002/smll.v9.24

    84. [84]

      Deng, R.; Liu, S.; Li, J.; Liao, Y.; Tao, J.; Zhu, J. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889-1893. doi: 10.1002/adma.v24.14

    85. [85]

      Xu, J.; Li, J.; Yang, Y.; Wang, K.; Xu, N.; Li, J.; Liang, R.; Shen, L.; Xie, X.; Tao, J.; Zhu, J. Block copolymer capsules with structure-dependent release behavior. Angew. Chem. Int. Ed. 2016, 55, 14633-14637. doi: 10.1002/anie.201607982

    86. [86]

      Xu, J.; Yang, Y.; Wang, K.; Li, J.; Zhou, H.; Xie, X.; Zhu, J. Additives induced structural transformation of ABC triblock copolymer particles. Langmuir 2015, 31, 10975-10982. doi: 10.1021/acs.langmuir.5b02843

    87. [87]

      Wu, Y.; Tan, H.; Yang, Y.; Li, Y.; Xu, J.; Zhang, L.; Zhu, J. Regulating block copolymer assembly structures in emulsion droplets through metal ion coordination. Langmuir 2018, 34, 11495-11502. doi: 10.1021/acs.langmuir.8b02135

    88. [88]

      Wu, Y.; Wang, K.; Tan, H.; Xu, J.; Zhu, J. Emulsion solvent evaporation-induced self-assembly of block copolymers containing pH-sensitive block. Langmuir 2017, 33, 9889-9896. doi: 10.1021/acs.langmuir.7b02330

    89. [89]

      Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R.; Basri, S. M. M.; Mirshekari, H.; Amiri, M.; Pishabad, Z. S.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, M. R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457-1501. doi: 10.1039/C5CS00798D

    90. [90]

      Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y., Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053-7059. doi: 10.1002/(ISSN)1521-3773

    91. [91]

      Wan, Y.; Zhao, D., On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821-2860. doi: 10.1021/cr068020s

    92. [92]

      Deng, Y.; Wei, J.; Sun, Z.; Zhao, D. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem. Soc. Rev. 2013, 42, 4054-4070. doi: 10.1039/C2CS35426H

    93. [93]

      Wu, Y. Y.; Cheng, G. S.; Katsov, K.; Sides, S. W.; Wang, J. F.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Composite mesostructures by nano-confinement. Nat. Mater. 2004, 3, 816-822. doi: 10.1038/nmat1230

    94. [94]

      He, Y.; Zhang, Y.; Yan, N.; Zhu, Y.; Jiang, W.; Shi, D., Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles. Nanoscale 2017, 9, 15056-15061. doi: 10.1039/C7NR04923D

    95. [95]

      Deng, R.; Liang, F.; Zhou, P.; Zhang, C.; Qu, X.; Wang, Q.; Li, J.; Zhu, J.; Yang, Z. Janus nanodisc of diblock copolymers. Adv. Mater. 2014, 26, 4469-4472. doi: 10.1002/adma.v26.26

    96. [96]

      Deng, R.; Liang, F.; Qu, X.; Wang, Q.; Zhu, J.; Yang, Z. Diblock copolymer based Janus nanoparticles. Macromolecules 2015, 48, 750-755. doi: 10.1021/ma502339s

    97. [97]

      Yang, Y.; Kim, H.; Xu, J.; Hwang, M. S.; Tian, D.; Wang, K.; Zhang, L.; Liao, Y.; Park, H. G.; Yi, G. R.; Xie, X.; Zhu, J. Responsive block copolymer photonic microspheres. Adv. Mater. 2018, 30, 1707344. doi: 10.1002/adma.v30.21

    98. [98]

      Pisani, E.; Tsapis, N.; Galaz, B.; Santin, M.; Berti, R.; Taulier, N.; Kurtisovski, E.; Lucidarme, O.; Ourevitch, M.; Doan, B. T.; Beloeil, J. C.; Gillet, B.; Urbach, W.; Bridal, S. L.; Fattal, E. Perfluorooctyl bromide polymeric capsules as dual contrast agents for ultrasonography and magnetic resonance imaging. Adv. Funct. Mater. 2008, 18, 2963-2971. doi: 10.1002/adfm.v18:19

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1732
  • HTML全文浏览量:  55
文章相关
  • 发布日期:  2019-08-01
  • 收稿日期:  2019-03-29
  • 修回日期:  2019-05-14
  • 网络出版日期:  2019-06-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章