Synthesis of Cerium-containing Polymethylphenyl Silicone and Its Antioxidant Effect on Fluorosilicone Rubber

Yong Guan Jian Hu Yong-Kang Huang Yang You Huan-Yao Zhang An-Na Zheng Xiang Xu Da-Fu Wei

Citation:  Yong Guan, Jian Hu, Yong-Kang Huang, Yang You, Huan-Yao Zhang, An-Na Zheng, Xiang Xu, Da-Fu Wei. Synthesis of Cerium-containing Polymethylphenyl Silicone and Its Antioxidant Effect on Fluorosilicone Rubber[J]. Chinese Journal of Polymer Science, 2019, 37(8): 783-789. doi: 10.1007/s10118-019-2266-4 shu

Synthesis of Cerium-containing Polymethylphenyl Silicone and Its Antioxidant Effect on Fluorosilicone Rubber

English


    1. [1]

      Zhang, X. K.; Poojari, Y.; Drechsler, L. E.; Kuo, C. M.; Fried, J. R.; Clarson, S. J. Pervaporation of organic liquids from binary aqueous mixtures using poly(trifluoropropylmethylsiloxane) and poly(dimethylsiloxane) dense membranes. J. Inorg. Organomet. Polym. Mater. 2007, 18, 246-252.

    2. [2]

      Esmizadeh, E.; Naderi, G.; Barmar, M. Effect of organo-clay on properties and mechanical behavior of fluorosilicone rubber. Fibers Polym. 2014, 15, 2376-2385. doi: 10.1007/s12221-014-2376-0

    3. [3]

      Cypryk, M.; Delczyk, B.; Juhari, A.; Koynov, K. Controlled synthesis of trifluoropropylmethylsiloxane-dimethylsiloxane gradient copolymers by anionic ROP of cyclotrisiloxanes. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1204-1216. doi: 10.1002/pola.v47:4

    4. [4]

      Gao, Y.; Jiang, W.; Guan, Y.; Yang, P.; Zheng, A. N. A novel approach for anionic bulk polymerization of 1,3,5-tris(trifluoropropylmethyl)cyclotrisiloxane. Polym. Eng. Sci. 2010, 50, 2440-2447. doi: 10.1002/pen.21690

    5. [5]

      Liu, Y.; Liu, H.; Zhang, R.; Zhou, C.; Feng, S. Preparation and properties of heat curable blended methylfluorosilicone rubber. Polym. Eng. Sci. 2013, 53, 52-58. doi: 10.1002/pen.v53.1

    6. [6]

      Kahlig, H.; Zollner, P.; Mayer-Helm, B. X. Characterization of degradation products of poly[(3,3,3-trifluoropropyl)methylsiloxane] by nuclear magnetic resonance spectroscopy, mass spectrometry and gas chromatography. Polym. Degrad. Stab. 2009, 94, 1254-1260. doi: 10.1016/j.polymdegradstab.2009.04.019

    7. [7]

      Xu, X.; Xu, Z.; Chen, P.; Zhou, X.; Zheng, A. N; Guan, Y. Preparation of fluorosilicone random copolymers with properties superior to those of fluorosilicone/silicone polymer blends. J. Inorg. Organomet. Polym. Mater. 2015, 25, 1267-1276. doi: 10.1007/s10904-015-0236-z

    8. [8]

      Dai, Y.; Ruan, X.; Bai, F.; Yu, M.; Li, H.; Zhao, Z.; He, G. High solvent resistance PTFPMS/PEI hollow fiber composite membrane for gas separation. Appl. Surf. Sci. 2016, 360, 164-173. doi: 10.1016/j.apsusc.2015.11.014

    9. [9]

      Bhuvaneswari, C. M.; Dhanasekaran, R.; Chakravarthy, S. K. R.; Kale, S. S.; Gouda, G. Evaluation of fluorosicone-silicone elastomer blend for aeronautical fuel system. Prog. Rubber Plast. Recycl. Technol. 2015, 31, 207-218. doi: 10.1177/147776061503100305

    10. [10]

      Smitha Alex, A.; Rajeev, R. S.; Krishnaraj, K.; Sreenivas, N.; Manu, S. K.; Gouri, C.; Sekkar, V. Thermal protection characteristics of polydimethylsiloxane-organoclay nanocomposite. Polym. Degrad. Stab. 2017, 144, 281-291. doi: 10.1016/j.polymdegradstab.2017.08.026

    11. [11]

      Camino, G.; Lomakin, S. M.; Lazzari, M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 2001, 42, 2395-2402. doi: 10.1016/S0032-3861(00)00652-2

    12. [12]

      Camino, G.; Lomakin, S. M.; Lagerad, M. Thermal polydimethylsiloxane degradation part 2. The degradation mechanisms. Polymer 2002, 43, 2011-2015. doi: 10.1016/S0032-3861(01)00785-6

    13. [13]

      Patel, M.; Skinner, A. R. Thermal ageing studies on room-temperture vulcanised polysiloxane rubbers. Polym. Degrad. Stab. 2001, 73, 399-402. doi: 10.1016/S0141-3910(01)00118-5

    14. [14]

      Jovanovic, J. D.; Govedarica, M. N.; Dvornic, P. R.; Popovic, I. G. The thermogravimetric analysis of some polysiloxanes. Polym. Degrad. Stab. 1998, 61, 87-93. doi: 10.1016/S0141-3910(97)00135-3

    15. [15]

      Zhang, S.; Wang, H. Thermal degradation of amino-group-modified polydimethylsiloxane. J. Therm. Anal. Calorim. 2010, 103, 711-716.

    16. [16]

      Lewicki, J. P.; Liggat, J. J.; Patel, M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym. Degrad. Stab. 2009, 94, 1548-1557. doi: 10.1016/j.polymdegradstab.2009.04.030

    17. [17]

      Liu, Y. R.; Huang, Y. D.; Liu, L. Thermal stability of POSS/methylsilicone nanocomposites. Compos. Sci. Technol. 2007, 67, 2864-2876. doi: 10.1016/j.compscitech.2007.01.023

    18. [18]

      Zheng, A. N.; Huang, Y.; You, Y.; Hu, J.; Wei, D.; Xu, X.; Guan, Y. Boron particles acting as antioxidants for fluorosilicone rubber due to their radical scavenging activity. Polym. Degrad. Stab. 2018, 158, 168-175. doi: 10.1016/j.polymdegradstab.2018.09.017

    19. [19]

      Guan, Y.; Yang, R.; Huang, Y.; Yu, C.; Li, X.; Wei, D.; Xu, X. Multi-walled carbon nanotubes acting as antioxidant for fluorosilicone rubber. Polym. Degrad. Stab. 2018, 156, 161-169. doi: 10.1016/j.polymdegradstab.2018.06.018

    20. [20]

      Xu, X.; Liu, J.; Chen, P.; Wei, D.; Guan, Y.; Lu, X.; Xiao, H. The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber. J. Appl. Polym. Sci. 2016, 133, 44117.

    21. [21]

      Paul, D. R.; Mark, J. E. Fillers for polysiloxane (" silicone”) elastomers. Prog. Polym. Sci. 2010, 35, 893-901. doi: 10.1016/j.progpolymsci.2010.03.004

    22. [22]

      Li, H.; Tao, S.; Huang, Y.; Su, Z.; Zheng, J. The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives. Compos. Sci. Technol. 2013, 76, 52-60. doi: 10.1016/j.compscitech.2012.12.019

    23. [23]

      Zhang, X.; Zhang, Q.; Zheng, J. Effect and mechanism of iron oxide modified carbon nanotubes on thermal oxidative stability of silicone rubber. Compos. Sci. Technol. 2014, 99, 1-7. doi: 10.1016/j.compscitech.2014.05.003

    24. [24]

      Shentu, B. Q.; Gan, T. F.; Weng, Z. X. Modification of Fe2O3 and its effect on the heat-resistance of silicone rubber. J. Appl. Polym. Sci. 2009, 113, 3202-3206. doi: 10.1002/app.v113:5

    25. [25]

      Gan, T. F.; Shentu, B. Q.; Weng, Z. X. Modification of CeO2 and its effect on the heat-resistance of silicone rubber. Chinese J. Polym. Sci. 2008, 26, 489-494. doi: 10.1142/S0256767908003163

    26. [26]

      Botter, W.; Ferreira Soares, R.; Galembeck, F. Interfacial reactions and self-adhesion of polydimethylsiloxanes. J. Adhes. Sci. Technol. 1992, 6, 791-805. doi: 10.1163/156856192X00449

    27. [27]

      Sim, L. C.; Ramanan, S. R.; Ismail, H.; Seetharamu, K. N.; Goh, T. J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta. 2005, 430, 155-165. doi: 10.1016/j.tca.2004.12.024

    28. [28]

      Yao, Y. Y.; Lu, G. Q.; Boroyevich, D. S.; Ngo, K. D. T. Effect of Al2O3 fibers on the high-temperature stability of silicone elastomer. Polymer 2014, 55, 4232-4240. doi: 10.1016/j.polymer.2014.05.044

    29. [29]

      Nielsen, J. M. Oxidative stabilization of dimethyl silicone fluids with iron between 70 and 370 °C. J. Polym. Sci., Polym. Symp. 1973, 40, 189-197.

    30. [30]

      Baker, H. R.; Singleterry, C. R. Stabilization of silicone lubricating fluids above 200 °C by iron, copper, cerium, and other metal compounds. J. Chem. Eng. Data 1961, 6, 146-154. doi: 10.1021/je60009a030

    31. [31]

      Han, W. Q.; Wu, L. J.; Zhu, Y. M. Formation and oxidation state of CeO2-x nanotubes. J. Am. Chem. Soc. 2005, 127, 12814-12815. doi: 10.1021/ja054533p

    32. [32]

      Belyavskii, S. G.; Mingalyov, P. G.; Giulieri, F.; Combarrieau, R.; Lisichkin, G. V. Chemical modification of the surface of a carbonyl iron powder. Prot. Met. 2006, 42, 244-252. doi: 10.1134/S0033173206030064

    33. [33]

      Ikaev, A. M.; Mingalyov, P. G.; Lisichkin, G. V. Chemical modification of iron oxide surface with organosilicon and organophosphorous compounds. Colloid J. 2007, 69, 741-746. doi: 10.1134/S1061933X07060105

    34. [34]

      Pu, H. T.; Jiang, F. J.; Yang, Z. L. Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films. Mater. Lett. 2006, 60, 94-97. doi: 10.1016/j.matlet.2005.07.079

    35. [35]

      Huang, R. H.; Wang, L.; Lin, Y.; Dong, Y.; You, D. Surface modification of carbonyl iron powders with silicone polymers in supercritical fluid to get higher dispersibility and higher thermal stability. Surf. Interface Anal. 2017, 49, 79-84. doi: 10.1002/sia.v49.2

    36. [36]

      Li, Y. M.; Zheng, Z. M.; Xu, C. L.; Ren, C.; Zhang, Z.; Xie, Z. Synthesis of iron-containing polysilazane and its antioxidation effect on silicone oil and rubber. J. Appl. Polym. Sci. 2003, 90, 306-309. doi: 10.1002/(ISSN)1097-4628

    37. [37]

      Cai, D.; Neyer, A.; Kuckuk, R.; Heise, H. M. Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct. 2010, 976, 274-281. doi: 10.1016/j.molstruc.2010.03.054

    38. [38]

      Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to infrared and Raman spectroscopy. Academic Press, San Diego, 1990, p. 355.

    39. [39]

      Sopicka-Lizer, M.; Michalik, D.; Plewa, J.; Juestel, T.; Winkler, H.; Pawlik, T. The effect of Al―O substitution for Si―N on the luminescence properties of YAG:Ce phosphor. J. Eur. Ceram. Soc. 2012, 32, 1383-1387. doi: 10.1016/j.jeurceramsoc.2011.04.021

    40. [40]

      Selvaraj, M.; Kim, B. H.; Lee, T. G. FTIR studies on selected mesoporous metallosilicate molecular sieves. Chem. Lett. 2005, 34, 1290-1291. doi: 10.1246/cl.2005.1290

    41. [41]

      Lin, S. L.; Hwang, C. S.; Lee, J. F. Characterization of CeO2-Al2O3-SiO2 glasses by infrared and X-ray absorption near edge structure spectroscopies. J. Mater. Res. 1996, 11, 2641-2650. doi: 10.1557/JMR.1996.0332

    42. [42]

      Park, S. H.; Kim, B. H.; Selvaraj, M.; Lee, T. G. Synthesis and characterization of mesoporous Ce-Mn-MCM-41 molecular sieves. J. Ind. Eng. Chem. 2007, 13(4), 637-643.

    43. [43]

      Laha, S. C.; Mukherjee, P.; Sainkar, S. R.; Kumar, R. Cerium containing MCM-41-Type mesoporous materials and their acidic and redox catalytic properties. J. Catal. 2002, 207, 213-223. doi: 10.1006/jcat.2002.3516

    44. [44]

      Radhakrishnan T S. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: Thermal degradation of polydimethylsiloxanes. J. Appl. Polym. Sci. 1999, 73: 441-450. doi: 10.1002/(ISSN)1097-4628

    45. [45]

      Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056-1058.

    46. [46]

      Tarnuzzer, R. W.; Colon J.; Patil S.; Seal S. Vacancy engineered ceria nanostructures for protection from nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005, 5, 2573. doi: 10.1021/nl052024f

    47. [47]

      Xue, Y.; Luan, Q. F.; Yang, D.; Yao, X.; Zhou, K. B. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C 2011, 115, 4433-4438. doi: 10.1021/jp109819u

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1527
  • HTML全文浏览量:  29
文章相关
  • 发布日期:  2019-08-01
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-03-14
  • 网络出版日期:  2019-05-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章