Guanidinoamidized Linear Polyethyleneimine for Gene Delivery

Bo Zhang Xin-peng M Mei-hua Sui Edward Van Kirk William J. Murdoch Maciej Radosz Neng-ming Lin You-qing Shen

Citation:  Bo Zhang, Xin-peng M, Mei-hua Sui, Edward Van Kirk, William J. Murdoch, Maciej Radosz, Neng-ming Lin, You-qing Shen. Guanidinoamidized Linear Polyethyleneimine for Gene Delivery[J]. Chinese Journal of Polymer Science, 2015, 33(6): 908-919. doi: 10.1007/s10118-015-1644-9 shu

Guanidinoamidized Linear Polyethyleneimine for Gene Delivery

  • 基金项目:

    This work was financially supported by the Qianjiang Talent Program of Zhejiang Province (2014.1-2015.12, Zhang Bo), the National Natural Science Fund for Distinguished Young Scholars (No. 50888001), the National Natural Science Foundation of China (No. 20974096) , Zhejiang Provicial Program for the Cultivation of High-level Innovative Health Talents (2010-190-4), and the U.S. National Science Foundation (No. CBET 0753109, DMR-0705298) and Department of Defense (No. BC083821).

摘要: Guanidine was introduced to low molecular weight linear polyethyleneimine (LPEI) via amide groups, to explore the effect of both guanidine degree and pendant chain length on its transfection behavior. The resulting guanidinoamidized LPEIs (GLPEIs) could dramatically reduce LPEI's toxicity, enhance its DNA-packaging capability, cellular uptake and therefore transfection efficiency. These polyplexes were taken up very efficiently via caveolae-mediated endocytosis and their transfection efficiencies in ovarian cancer cells were significantly improved compared to native LPEI10k polyplexes. Among these GLPEIs, LPEI-C3-G100 showed higher DNA affinity even than LPEI25k and the highest transfection efficiency, probably due to the optimization of polymer chain flexibility. Of notice, LPEI-C3-G100 polyplexes could more effectively accumulate into cytoplasm than LPEI25k, although the transfection efficiency of LPEI-C3-G100 polyplexes was not superior to that of LPEI25k polyplexes, which would be probably attributed to the more efficient release of LPEI25k polyplexes than LPEI-C3-G100 polyplexes in the cytoplasm.

English

  • 
    1. [1]

      Vercauteren, D., Rejman, J., Martens, T.F., Demeester, J., De Smedt, S.C. and Braeckmans, K.J., Control. Release,2012, 161: 566

    2. [2]

      McCarthy, H.O., McCaffrey, J., McCrudden, C.M., Zholobenko, A., Ali, A.A., McBride, J.W., Massey, A.S., Pentlavalli, S., Chen, K.H., Cole, G., Loughran, S.P., Dunne, N.J., Donnelly, R.F., Kett, V.L. and Robson, T., J. Control. Release, 2014, 189: 141

    3. [3]

      Xu, C.H., Sui, M.H., Tang, J.B. and Shen, Y.Q., Chinese J. Polym. Sci., 2011, 29(3): 274

    4. [4]

      Jang, Y.L., Ku, S.H., Lee, S.J., Park, J.H., Kim, W.J., Kwon, I.C., Kim, S.H. and Jeong, J.H., J. Nanosci. Nanotechnol.,2014, 14: 7388

    5. [5]

      Jiang, X.L., Chu, Y.F., Liu, J., Zhang, G.Y. and Zhuo, R.X., Chinese J. Polym. Sci., 2011, 29(4): 421

    6. [6]

      Wang, F., Wang, Y., Wang, H., Shao, N., Chen, Y. and Cheng, Y., Biomaterials, 2014, 35: 9187

    7. [7]

      Bao, X., Wang, W., Wang, C., Wang, Y., Zhou, J., Ding, Y., Wang, X. and Jin, Y., Biomaterials, 2014, 35: 8450

    8. [8]

      Du, J., Shi, Q.S., Sun, Y., Liu, P.F., Zhu, M.J., Du, L.F. and Duan, Y.R. , J. Gene Med., 2011, 13: 312

    9. [9]

      Canine, B.F. and Hatefi, A., Adv. Drug Deliver. Rev., 2010, 62: 1524

    10. [10]

      Levine, R.M., Scott, C.M. and Kokkoli, E., Soft Matter, 2013, 9: 985

    11. [11]

      Duncan, R. and Richardson, S.C.W., Mol. Pharmaceut., 2012, 9: 2380

    12. [12]

      Yamano, S., Dai, J., Hanatani, S., Haku, K., Yamanaka, T., Ishioka, M., Takayama, T., Yuvienco, C., Khapli, S., Moursi, A.M. and Montclare, J.K., Biomaterials, 2014, 35: 1705

    13. [13]

      Wang, M., Tucker, J.D., Lu, P., Wu, B., Cloer, C. and Lu, Q., Bioconjugate Chem., 2012, 23: 837

    14. [14]

      Duan, X., Xiao, J., Yin, Q., Zhang, Z., Mao, S. and Li, Y., Int. J. Nanomed., 2012, 7: 4961

    15. [15]

      Aravindan, L., Bicknell, K.A., Brooks, G., Khutoryanskiy, V.V. and Williams, A.C., Macromol. Biosci., 2013, 13: 1163

    16. [16]

      Muthiah, M., Park, I.K. and Cho, C.S., Expert Opin. Drug Del., 2013, 10: 1259

    17. [17]

      Todorova, N., Chiappini, C., Mager, M., Simona, B., Patel, I.I., Stevens, M.M. and Yarovsky, I., Nano Lett.,2014, 14: 5229

    18. [18]

      Sakuma, S., Suita, M., Yamamoto, T., Masaoka, Y., Kataoka, M., Yamashita, S., Nakajima, N., Shinkai, N., Yamauchi, H., Hiwatari, K.I., Hashizume, A., Tachikawa, H., Kimura, R., Ishimaru, Y., Kasai, A. and Maeda, S., Eur. J. Pharm. Biopharm., 2012, 81: 64

    19. [19]

      Tung, C.H. and Weissleder, R., Adv. Drug Del. Rev., 2003, 55: 281

    20. [20]

      Mann, A., Shukla, V., Khanduri, R., Dabral, S., Singh, H. and Ganguli, M., Mol. Pharmaceut., 2014, 11: 683

    21. [21]

      Martin, I., Teixido, M. and Giralt, E., Curr. Pharm. Design, 2013, 19: 2924

    22. [22]

      Futaki, S., Hirose, H. and Nakase, I., Curr. Pharm. Design, 2013, 19: 2863

    23. [23]

      Oh, D., Shirazi, A.N., Northup, K., Sullivan, B., Tiwari, R.K., Bisoffi, M. and Parang, K., Mol. Pharmaceut.,2014, 11: 2845

    24. [24]

      Theodossiou, T.A., Pantos, A., Tsogas, I. and Paleos, C.M., ChemMedChem, 2008, 3: 1635

    25. [25]

      Son, S.J., Yu, G.S., Choe, Y.H., Kim, Y.J., Lee, E., Park, J.S. and Choi, J.S., B. Korean Chem. Soc., 2013, 34: 579

    26. [26]

      Nimesh, S. and Chandra, R., Eur. J. Pharm. Biopharm., 2008, 68: 647

    27. [27]

      Cheng, Q., Huang, Y., Zheng, H., Wei, T., Zheng, S., Huo, S., Wang, X., Du, Q., Zhang, X., Zhang, H.Y., Liang, X.J., Wang, C., Tang, R. and Liang, Z., Biomaterials, 2013, 34: 3120

    28. [28]

      Zhai, X., Sun, P., Luo, Y., Ma, C., Xu, J. and Liu, W., J. Appl. Polym. Sci., 2011, 121: 3569

    29. [29]

      Peng, L., Liu, M., Xue, Y.N., Huang, S.W. and Zhuo, R.X., Biomaterials, 2009, 30: 5825

    30. [30]

      Brissault, B., Kichler, A., Leborgne, C., Danos, O., Cheradame, H., Gau, J., Auvray, L., and Guis, C., Biomacromolecules, 2006, 7: 2863

    31. [31]

      Ou, M., Xu, R., Kim, S.H., Bull, D.A. and Kim, S.W., Biomaterials, 2009, 30: 5804

    32. [32]

      Zern, B.J., Chu, H., Osunkoya, A.O., Gao, J. and Wang, Y., Adv. Funct. Mater., 2011, 21: 434

    33. [33]

      Yu, G.S., Bae, Y.M., Kim, J.Y., Han, J., Ko, K.S. and Choi, J.S., Macromol. Res., 2012, 20: 1156

    34. [34]

      Carlson, P.M., Schellinger, J.G., Pahang, J.A., Johnson, R.N. and Pun, S.H., Biomater. Sci.-UK, 2013, 1: 736

    35. [35]

      Kim, T.I., Rothmund, T., Kissel, T. and Kim, S.W., J. Control. Release, 2011, 152: 110

    36. [36]

      Liu, B.R., Lin, M.D., Chiang, H.J. and Lee, H.J., Gene, 2012, 505: 37

    37. [37]

      Pack, D.W., Hoffman, A.S., Pun, S. and Stayton, P.S., Nat. Rev. Drug Discov., 2005, 4: 581

    38. [38]

      Shen, J., Kim, H.C., Su, H., Wang, F., Wolfram, J., Kirui, D., Mai, J., Mu, C., Ji, L.N., Mao, Z.W. and Shen, H., Theranostics, 2014, 4: 487

    39. [39]

      Morris, V.B. and Sharma, C.P., Biomaterials, 2010, 31: 8759

    40. [40]

      Ryu, K., Kim, K. and Kim, T.I., Macromol. Res., 2014, 22: 264

    41. [41]

      Beloor, J., Choi, C.S., Nam, H.Y., Park, M., Kim, S.H., Jackson, A., Lee, K.Y., Kim, S.W., Kumar, P. and Lee, S.K., Biomaterials, 2012, 33: 1640

    42. [42]

      El-Sayed, A. and Harashima, H., Mol. Ther., 2013, 21: 1118

    43. [43]

      Nassoy, P. and Lamaze, C., Trends. Cell Biol., 2012, 22: 381

    44. [44]

      Yao, J., Fan, Y., Li, Y. and Huang, L., J. Drug Target., 2013, 21: 926

    45. [45]

      Lee, H., Kim, I.K. and Park, T.G., Bioconjugate Chem., 2010, 21: 289

    46. [46]

      Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R. and Anderson, D.G., Nat. Rev. Genet., 2014, 15: 541

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1093
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2015-06-05
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-11-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章