Effects of Chain Entanglement on Liquid-Liquid Phase Separation Behavior of LCST-type Polymer Blends: Cloud Point and Decomposition Rate

Yu Lin Yong-gang Shangguan Bi-wei Qiu Wen-wen Yu Feng Chen Zhen-wu Guo Qiang Zheng

Citation:  Yu Lin, Yong-gang Shangguan, Bi-wei Qiu, Wen-wen Yu, Feng Chen, Zhen-wu Guo, Qiang Zheng. Effects of Chain Entanglement on Liquid-Liquid Phase Separation Behavior of LCST-type Polymer Blends: Cloud Point and Decomposition Rate[J]. Chinese Journal of Polymer Science, 2015, 33(6): 869-879. doi: 10.1007/s10118-015-1637-8 shu

Effects of Chain Entanglement on Liquid-Liquid Phase Separation Behavior of LCST-type Polymer Blends: Cloud Point and Decomposition Rate

  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (No. 51173165) and the Fundamental Research Funds for the Central Universities (No. 2013QNA4048).

摘要: By preparing homogenous blend samples with different degrees of chain entanglement, we report an anomalous contribution of chain entanglement to phase separation temperature and rate of poly(methyl methacrylate)/poly(styrene-comaleic anhydride) (PMMA/SMA) blends presenting a typical lower critical solution temperature (LCST) behavior. The meltmixed PMMA/SMA blends with a higher chain entanglement density present a lower cloud point (Tc) and shorter delay time, but lower phase separation rate at the given temperature than solution-cast ones, suggesting that for the polymer blends with different condensed state structure, thermodynamically more facilitation to phase separation (lower Tc) is not necessarily equivalent to faster kinetics (decomposition rate). The experimental results indicate that the lower Tc of melt-mixed sample is ascribed to smaller concentration fluctuation wavelength (m) induced by higher entanglement degree, while higher entanglement degree in melt-mixed sample leads to a confined segmental dynamics and consequently a slower kinetics (decomposition rate) dominated by macromolecular diffusion at a comparable quench depth. These results reveal that the chain packing in polymer blends can remarkably influence the liquid-liquid phase separation behavior, which is a significant difference from decomposition of small molecular mixtures.

English

  • 
    1. [1]

      Bernstein, R.E., Cruz, C.A., Paul, D.R. and Barlow, J.W., Macromolecules, 1977, 10: 681

    2. [2]

      Kyu, T. and Saldanha, J.M., Macromolecules, 1988, 21: 1021

    3. [3]

      Tomura, H., Saito, H. and Inoue, T., Macromolecules, 1992, 25: 1611

    4. [4]

      Lee, J.S., Prabu, A.A. and Kim, K.J., Macromolecules, 2009, 42: 5660

    5. [5]

      Zhang, R.Y., Cheng, H., Zhang, C.G., Sun, T.C., Dong, X. and Han, C.C., Macromolecules, 2008, 41: 6818

    6. [6]

      Zhang, R.Y., Dong, X., Wang, X., Cheng, H. and Han, C.C., Macromolecules, 2009, 42: 2873

    7. [7]

      Higgins, J.S., Fruitwala, H. and Tomlins, P.E., Macromolecules, 1989, 22: 3674

    8. [8]

      Kumaki, J. and Hashimoto, T., Macromolecules, 1986, 19: 763

    9. [9]

      Hashimoto, T., Phase Transit., 1988, 12: 47

    10. [10]

      Nilsson, S., Bernasik, A., Budkowski, A. and Moons, E., Macromolecules, 2007, 40: 8291

    11. [11]

      Chen, R.F., Shangguan, Y.G., Zhang, C.H., Chen, F., Harkin-Jones, E. and Zheng, Q., Polymer, 2011, 52: 2956

    12. [12]

      Huang, C.W., Gao, J.P., Yu, W. and Zhou, C.X., Macromolecules, 2012, 45: 8420

    13. [13]

      Pang, D.Z., Zuo, M., Zhao, J.S. and Zheng, Q., Chinese J. Polym. Sci., 2014, 32(11): 1419

    14. [14]

      Du, M., Wu, Q., Zuo, M. and Zheng, Q., Eur. Polym. J., 2013, 49: 2721

    15. [15]

      Yeganeh, J.K., Goharpey, F. and Foudazi, R., RSC Adv., 2012, 2: 8116

    16. [16]

      Zhang, J., Li, T., Hu, Z.N., Wang, H.P. and Yu, Y.F., RSC Adv., 2014, 4: 442

    17. [17]

      Tanaka, H., Phys. Rev. Lett., 1993, 71: 3158

    18. [18]

      Tanaka, H., Phys. Rev. Lett., 1996, 76: 787

    19. [19]

      Shi, W.C., Xie, X.M. and Han, C.C., Macromolecules, 2012, 45: 8336

    20. [20]

      Shi, W.C. and Han, C.C., Macromolecules, 2012, 45: 336

    21. [21]

      Lin, Y., Shangguan, Y.G., Zuo, M., Harkin-Jones, E. and Zheng, Q., Polymer, 2012, 53: 1418

    22. [22]

      Hashimoto, T., Kumaki, J. and Kawai, H., Macromolecules, 1983, 16: 641

    23. [23]

      Zheng, Q., Peng, M., Song, Y.H. and Zhao, T.J., Macromolecules, 2001, 34: 8483

    24. [24]

      Zuo, M., Peng, M. and Zheng, Q., Polymer, 2005, 46: 11085

    25. [25]

      Hu, H.Q., Li, J.Y., Zhang, C.G. and Han, C.C., Polymer, 2010, 51: 4619

    26. [26]

      Chopra, D., Kontopoulou, M., Vlassopoulos, D. and Hatzikiriakos, S.G., Rheol. Acta, 2002, 41: 10

    27. [27]

      Vlassopoulos, D., Rheol. Acta, 1996, 35: 556

    28. [28]

      Yu, W., Li, R.M. and Zhou, C.X., Polymer, 2011, 52: 2693

    29. [29]

      Lin, Y., Shangguan, Y.G., Chen, F., Zuo, M., and Zheng, Q., Polym. Int., 2013, 62: 676

    30. [30]

      Cahn, J.W. and Hilliard, J.E., J. Chem. Phys., 1958, 28: 258

    31. [31]

      Cahn, J.W., J. Chem. Phys., 1965, 42: 93

    32. [32]

      Cook, H.E., Acta Metall., 1970, 18: 297

    33. [33]

      Lin, Y., Tan, Y.Q,, Qiu, B.W., Cheng, J.Q., Wang, W.J., Shangguan, Y.G. and Zheng, Q., J. Membr. Sci., 2013, 439: 20

    34. [34]

      Zuo, M., Peng, M. and Zheng, Q., J. Polym. Sci., Part B: Polym. Phys., 2006, 44: 1547

    35. [35]

      Hu, H.X., Shangguan, Y.G., Zuo, M. and Zheng, Q., Acta Polymerica Sinica (in Chinese), 2009, (2): 123

    36. [36]

      Clarke, N. and McLeish, T.C.B., Phys. Rev. E, 1998, 57: R3731

    37. [37]

      Yang, K., Yang, Y.Z., Hu, C.L., Huang, Y.Y., Zhang, W.K., Chen, X.D. and Zhang, M.Q., Macromol. Chem. Phys.,2012, 213: 1735

    38. [38]

      Kumar, K.D., Gupta, S., Tsou, A.H. and Bhowmick, A.K., J. Appl. Polym. Sci., 2008, 110: 1485

    39. [39]

      He, G.S., Yang, J., Zheng, X.D., Wu, Q., Guo, L.H., Zhang, M.Q. and Chen, X.D., Polym. Test., 2012, 31: 182

    40. [40]

      de Gennes, P.G., J. Chem. Phys., 1980, 72: 4756

    41. [41]

      Jinnai, H., Hasegawa, H., Hashimoto, T. and Han, C.C., J. Chem. Phys., 1993, 99: 4845

    42. [42]

      Pincus, P., J. Chem. Phys., 1981, 75: 1996

    43. [43]

      Nicolai, T. and Brown, W., Macromolecules, 1999, 32: 2646

    44. [44]

      Sauer, B.B. and Walsh, D.J., Macromolecules, 1994, 27: 432

    45. [45]

      Lin, Y., Tan, Y.Q., Qiu, B.W., Shangguan, Y.G., Harkin-Jones, E. and Zheng, Q., J. Phys. Chem. B, 2013, 117: 697

    46. [46]

      Clarke, N., McLeish, T.C.B., Pavawongsak, S. and Higgins, J.S., Macromolecules, 1997, 30: 4459

    47. [47]

      Pavawongsak, S., Higgins, J.S., Clarke, N., McLeish, T.C.B. and Peiffer, D.G., Polymer, 2000, 41: 757

    48. [48]

      Liu, Y., Zhong, X.H., Zhan, G.Z., Yu, Y.F. and Jin, J.Y., J. Phys. Chem. B, 2012, 116: 3671

    49. [49]

      Ajji, A. and Choplin, L., Macromolecules, 1991, 24: 5221

    50. [50]

      Fredrickson, G.H. and Larson, R.G., J. Chem. Phys., 1987, 86: 1553

    51. [51]

      Yang, H., Shibayama, M., Stein, R.S., Shimizu, N. and Hashimoto, T., Macromolecules, 1986, 19: 1667

    52. [52]

      Wu, Y.H., Wang, D.M. and Lai, J.Y., J. Phys. Chem. B, 2008, 112: 4604

    53. [53]

      Zhong, X.H., Liu, Y., Su, H.H., Zhan, G.Z., Yu, Y.F. and Gan, W.J., Soft Matter, 2011, 7: 3642

    54. [54]

      Havriliak, S. and Negami, S., Polymer, 1967, 8: 161

    55. [55]

      Cao, Y., Zhang, H.D., Xiong, Z. and Yang, Y.L., Macromol. Theor. Simul., 2001, 10: 314

    56. [56]

      Takenaka, M., Izumitani, T. and Hashimoto, T., J. Chem. Phys., 1992, 97: 6855

    57. [57]

      Nurkhamidah, S. and Woo, E.M., Macromolecules, 2012, 45: 3094

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1124
  • HTML全文浏览量:  5
文章相关
  • 发布日期:  2015-06-05
  • 收稿日期:  2014-10-08
  • 修回日期:  2014-11-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章