Three-dimensional Molecular Geometry of PEG Hydrogels by an Expansion-Contraction Method through Monte Carlo Simulations

Ao-kai Zhang Jun Ling Yu-wei Sun Guo-dong Fu

Citation:  Ao-kai Zhang, Jun Ling, Yu-wei Sun, Guo-dong Fu. Three-dimensional Molecular Geometry of PEG Hydrogels by an Expansion-Contraction Method through Monte Carlo Simulations[J]. Chinese Journal of Polymer Science, 2015, 33(5): 721-731. doi: 10.1007/s10118-015-1620-4 shu

Three-dimensional Molecular Geometry of PEG Hydrogels by an Expansion-Contraction Method through Monte Carlo Simulations

  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (Nos. 21274020, 21074022 and 21304019) and Zhejiang Provincial Natural Science Foundation of China (No. Y4110115).

摘要: Three-dimensional (3-D) coarse-grained Monte Carlo algorithms were used to simulate the conformations of swollen hydrogels formed by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The simulation consists of three successive steps including diffusion, cross-linking and relaxation. The cross-linking of multifunctional reaction sites is simulated instantly followed by fast crosslinking. In order to explore the validity of this approach pristine poly(ethylene glycol) (PEG) hydrogels with tri- and tetra-functional reaction sites (G3 and G4 respectively) were prepared and characterized. The data from the simulations were found to be in good agreement with experimental results such as PEG lengths between crosslinks, pore volume and pore radius distribution, indicating the validity of the modeling algorithm. The calculated PEG lengths in G3 and G4 networks are close ( 4.6 nm). The 3-D visual topological structure of the hydrogel network suggests that the ideal hydrogel is far from cubic, diamond or any well defined structures of regular repeating cells.

English


    1. [1]

      Drury, J.L. and Mooney, D.J., Biomaterials, 2003, 24(24): 4337

    2. [2]

      Qiu, Y. and Park, K., Adv. Drug Deliv. Rev., 2001, 53(3): 321

    3. [3]

      Meijer, H.E.H. and Govaert, L.E., Prog. Polym. Sci., 2005, 30(8-9): 915

    4. [4]

      Shoichet, M.S., Macromolecules, 2010, 43(2): 581

    5. [5]

      Grest, G.S., Ptz, M., Everaers, R. and Kremer, K., J. Non-Cryst. Solids, 2000, 274(1): 139

    6. [6]

      Hlzl, T., Trautenberg, H.L. and Gritz, D., Phys. Rev. Lett., 1997, 79(12): 2293

    7. [7]

      Yong, C.W. and Higgs, P.G., Macromolecules, 1999, 32(15): 5062

    8. [8]

      Duering, E.R., Kremer, K. and Grest, G.S., J. Chem. Phys., 1994, 101(9): 8169

    9. [9]

      Hosono, N., Masubuchi, Y., Furukawa, H. and Watanabe, T., J. Chem. Phys., 2007, 127(16): 164905

    10. [10]

      Nguyen, K.T. and West, J.L., Biomaterials, 2002, 23(22): 4307

    11. [11]

      Schneider, S. and Linse, P., Eur. Phys. J. E, 2002, 8(5): 457

    12. [12]

      Schneider, S. and Linse, P., J. Phys. Chem. B, 2003, 107(32): 8030

    13. [13]

      Yan, Q.L. and de Pablo, J.J., Phys. Rev. Lett., 2003, 91(1): 018301

    14. [14]

      Mann, B.A., Holm, C. and Kremer, K., J. Chem. Phys., 2005, 122: 154903

    15. [15]

      Lin, C.C. and Anseth, K.S., Pharm. Res., 2009, 26(3): 631

    16. [16]

      Sakai, T., Matsunaga, T., Yamamoto, Y., Ito, C., Yoshida, R., Suzuki, S., Sasaki, N., Shibayama, M. and Chung, U.I., Macromolecules, 2008, 41(14): 5379

    17. [17]

      Sugimura, A., Asai, M., Matsunaga, T., Akagi, Y., Sakai, T., Noguchi, H. and Shibayama, M., Polym. J., 2013, 45(3): 300

    18. [18]

      Kolb, H.C., Finn, M.G. and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, 40(11): 2004

    19. [19]

      Binder, W.H. and Sachsenhofer, R., Macromol. Rapid Commun., 2007, 28(1): 15

    20. [20]

      Malkoch, M., Vestberg, R., Gupta, N., Mespouille, L., Dubois, P., Mason, A.F., Hedrick, J.L., Liao, Q., Frank, C.W., Kingsbury, K. and Hawker, C.J., Chem. Commun., 2006, (26): 2774

    21. [21]

      Crescenzi, V., Cornelio, L., Di Meo, C., Nardecchia, S. and Lamanna, R., Biomacromolecules, 2007, 8(6): 1844

    22. [22]

      Xu, L.Q., Yao, F., Fu, G.D. and Kang, E.T., Biomacromolecules, 2010, 11(7): 1810

    23. [23]

      Yao, F., Xu, L.Q., Fu, G.D. and Lin, B.P., Macromolecules, 2010, 43(23): 9761

    24. [24]

      Liu, S.Q., Ee, P.L. R., Ke, C.Y., Hedrick, J.L. and Yang, Y.Y., Biomaterials, 2009, 30(8): 1453

    25. [25]

      Gragert, M., Schunack, M. and Binder, W.H., Macromol. Rapid Commun., 2011, 32(5): 419

    26. [26]

      Schunack, M., Gragert, M., Dohler, D., Michael, P. and Binder, W.H., Macromol. Chem. Phys., 2012, 213(2): 205

    27. [27]

      Fu, G.D., Jiang, H.,Yao, F., Xu, L.Q., Ling, J. and Kang, E.T., Macromol. Rapid Commun., 2012, 33(18): 1523

    28. [28]

      Binder, K., Monte Carlo and molecular dynamics simulations in polymer science, Oxford University Press, USA, 1995

    29. [29]

      Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.,Teller, A.H. and Teller, E., J. Chem. Phys., 1953, 21(6): 1087

    30. [30]

      Leach, A.R., Molecular modelling: principles and applications, Prentice Hall, New York, 1996

    31. [31]

      Leung, Y.K. and Eichinger, B.E., J. Chem. Phys., 1984, 80(8): 3877

    32. [32]

      Leung, Y.K. and Eichinger, B.E., J. Chem. Phys., 1984, 80(8): 3885

    33. [33]

      Chen, J., Blevins, W.E., Park, H. and Park, K., J. Control. Release, 2000, 64(1): 39

    34. [34]

      Zhang, X.Z., Yang, Y.Y., Chung, T.S. and Ma, K.X., Langmuir, 2001, 17(20): 6094

    35. [35]

      Flory, J.P., Principles of polymer chemistry, Cornell University Press, 1953

    36. [36]

      Steinmetz, N.F. and Manchester, M., Biomacromolecules, 2009, 10(4): 784

    37. [37]

      Hagan, S., Davis, S., Illum, L., Davies, M., Garnett, M., Taylor, D., Irving, M. and Tadros, T.F., Langmuir,1995, 11(5): 1482

    38. [38]

      Flory, P.J. and Rehner Jr, J., J. Chem. Phys., 1943, 11: 521

    39. [39]

      Bromberg, L., J. Appl. Polym. Sci., 1996, 59(3): 459

    40. [40]

      Radi, B., Wellard, R.M. and George, G.A., Macromolecules, 2010, 43(23): 9957

    41. [41]

      Gibson, K. and Scheraga, H.A., J. Phys. Chem., 1987, 91(15): 4121

    42. [42]

      Edgecombe, S. and Linse, P., Macromolecules, 2007, 40(10): 3868

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1009
  • HTML全文浏览量:  45
文章相关
  • 发布日期:  2015-05-05
  • 收稿日期:  2014-09-05
  • 修回日期:  2014-10-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章