Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures

Bo Jiang Li-Jun Chen Ying Zhang Hong-Wei Tan Lin Xu Hai-Bo Yang

引用本文: Bo Jiang,  Li-Jun Chen,  Ying Zhang,  Hong-Wei Tan,  Lin Xu,  Hai-Bo Yang. Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures[J]. Chinese Chemical Letters, 2016, 27(4): 607-612. shu
Citation:  Bo Jiang,  Li-Jun Chen,  Ying Zhang,  Hong-Wei Tan,  Lin Xu,  Hai-Bo Yang. Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures[J]. Chinese Chemical Letters, 2016, 27(4): 607-612. shu

Hierarchical self-assembly of triangular metallodendrimers into the ordered nanostructures

  • 基金项目:

    L. Xu acknowledges the financial support of the National Natural Science Foundation of China (No. 21302058). H.-B. Yang acknowledges the financial support of the Key Basic Research Project of Shanghai Science and Technology Commission (No. 13JC1402200).

摘要: We designed and constructed a new family of 60° dendritic dipyridyl donors, from which two novel triangular metallodendrimers were successfully prepared via coordination-driven self-assembly. Inspired by the existence of multiple intermolecular interactions (e.g., π-π stacking and CH-π interactions) imposed by the DMIP-functionalized poly(benzyl ether) dendrons, their hierarchical selfassembly behaviors were studied in various mixed solvents by using scanning electron microscopy (SEM). Interestingly, it was found that the morphologies of the obtainedmetallodendrimers were highly depended on the dendron generation. For example, the first-generation metallodendrimer was able to hierarchically self-assemble into the spherical nanostructures in various mixed solvents. However, the nanofibers were observed for the second-generation metallodendrimer under the similar conditions. Furthermore, the driven force for the formation of such ordered nanostructures was investigated by using 1H NMR and fluorescence spectroscopy.

English

    1. [1] J. Yang, Q. Zhang, H. Chang, Y. Cheng, Surface-engineered dendrimers in gene delivery, Chem. Rev. 115(2015) 5274-5300.

    2. [2] Y.M. Ye, Y. Feng, Q.H. Fan, Asymmetric hydrogenation in the core of dendrimers, Acc. Chem. Res. 47(2014) 2894-2906.

    3. [3] A.W. Bosman, H.M. Janssen, E.W. Meijer, About dendrimers:structure, physical properties, and applications, Chem. Rev. 99(1999) 1665-1688.

    4. [4] D. Astruc, E. Boisselier, C. Ornelas, Dendrimers designed for functions:from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine, Chem. Rev. 110(2010) 1857-1959.

    5. [5] L. Xu, L.J. Chen, H.B. Yang, Recent progress in the construction of cavity-cored supramolecular metallodendrimers via coordination-driven self-assembly, Chem. Commun. 50(2014) 5156-5170.

    6. [6] C.M. Cardona, S. Mendoza, A.E. Kaifer, Electrochemistry of encapsulated redox centers, Chem. Soc. Rev. 29(2000) 37-42.

    7. [7] S. Serroni, S. Campagna, F. Puntoriero, C.D. Pietro, N.D. McClenaghan, F. Loiseau, Dendrimers based on ruthenium(II) and osmium(II) polypyridine complexes and the approach of using complexes as ligands and complexes as metals, Chem. Soc. Rev. 30(2001) 367-375.

    8. [8] D. Astruc, C. Ornelas, J. Ruiz, Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis, Acc. Chem. Res. 41(2008) 841-856.

    9. [9] R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Supramolecular coordination:selfassembly of finite two- and three-dimensional ensembles, Chem. Rev. 111(2011) 6810-6918.

    10. [10] Y.F. Han, W.G. Jia, W.B. Yu, G.X. Jin, Stepwise formation of organometallic macrocycles, prisms and boxes from Ir, Rh and Ru-based half-sandwich units, Chem. Soc. Rev. 38(2009) 3419-3434.

    11. [11] L. Xu, Y.X. Wang, L.J. Chen, H.B. Yang, Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly:from structure to functions, Chem. Soc. Rev. 44(2015) 2148-2167.

    12. [12] B. Olenyuk, J.A. Whiteford, A. Fechtenkö tter, P.J. Stang, Self-assembly of nanoscale cuboctahedra by coordination chemistry, Nature 398(1999) 796-799.

    13. [13] Q.F. Sun, J. Iwasa, D. Ogawa, et al., Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation, Science 328(2010) 1144-1147.

    14. [14] P. Mal, B. Breiner, K. Rissanen, J.R. Nitschke, White phosphorus is air-stable within a self-assembled tetrahedral capsule, Science 324(2009) 1697-1699.

    15. [15] D.M. Kaphan, M.D. Levin, R.G. Bergman, K.N. Raymond, F.D. Toste, A supramolecular microenvironment strategy for transition metal catalysis, Science 350(2015) 1235-1238.

    16. [16] Y.Y. Zhang, X.Y. Shen, L.H. Weng, G.X. Jin, Octadecanuclear macrocycles and nonanuclear bowl-shaped structures based on two analogous pyridyl-substituted imidazole-4,5-dicarboxylate ligands, J. Am. Chem. Soc. 136(2014) 15521-15524.

    17. [17] D. Samanta, P.S. Mukherjee, Sunlight-induced covalent marriage of two triply interlocked Pd6 cages and their facile thermal separation, J. Am. Chem. Soc. 136(2014) 17006-17009.

    18. [18] S. Lö ffler, J. Lübben, L. Krause, et al., Triggered exchange of anionic for neutral guests inside a cationic coordination cage, J. Am. Chem. Soc. 137(2015) 1060-1063.

    19. [19] N. Kishi, M. Akita, M. Kamiya, S. Hayashi, H.F. Hsu, M. Yoshizawa, Facile catch and release of fullerenes using a photoresponsive molecular tube, J. Am. Chem. Soc. 135(2013) 12976-12979.

    20. [20] Z.Y. Li, Y. Zhang, C.W. Zhang, et al., Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5] arene metallacycles and their multiple stimuli-responsive behavior, J. Am. Chem. Soc. 136(2014) 8577-8589.

    21. [21] B. Jiang, J. Zhang, J.Q. Ma, et al., Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability, J. Am. Chem. Soc. 138(2016) 738-741.

    22. [22] L.J. Chen, Y.Y. Ren, N.W. Wu, et al., Hierarchical self-assembly of discrete organoplatinum(II) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection, J. Am. Chem. Soc. 137(2015) 11725-11735.

    23. [23] X.Q. Wang, W. Wang, G.Q. Yin, et al., Cross-linked supramolecular polymer metallogels constructed via a self-sorting strategy and their multiple stimulusresponse behaviors, Chem. Commun. 51(2015) 16813-16816.

    24. [24] N.W. Wu, L.J. Chen, C. Wang, et al., Hierarchical self-assembly of a discrete hexagonal metallacycle into the ordered nanofibers and stimuli-responsive supramolecular gels, Chem. Commun. 50(2014) 4231-4233.

    25. [25] J. Zhang, R. Marega, L.J. Chen, et al., Hierarchical self-assembly of supramolecular hydrophobic metallacycles into ordered nanostructures, Chem. Asian J. 9(2014) 2928-2936.

    26. [26] M. Schweiger, S.R. Seidel, A.M. Arif, P.J. Stang, Solution and solid state studies of a triangle-square equilibrium:anion-induced selective crystallization in supramolecular self-assembly, Inorg. Chem. 41(2002) 2556-2559.

    27. [27] F.A. Cotton, C. Lin, C.A. Murillo, A neutral triangular supramolecule formed by Mo24+ units, Inorg. Chem. 40(2001) 575-577.

    28. [28] M. Fujita, O. Sasaki, T. Mitsuhashi, et al., On the structure of transition-metallinked molecular squares, Chem. Commun. (1996) 1535-1536.

    29. [29] Q. Han, L.L. Wang, Q.J. Li, et al., Synthesis of triangular metallodendrimers via coordination-driven self-assembly, J. Org. Chem. 77(2012) 3426-3432.

    30. [30] J. He, Z. Abliz, R. Zhang, Y. Liang, K. Ding, Direct on-line method to monitor the dynamic structure of noncovalent titanium complexes in solution by using cold-spray ionization time-of-flightmass spectrometry, Anal. Chem. 78(2006) 4737-4740.

    31. [31] L.J. Chen, G.Z. Zhao, B. Jiang, et al., Smart stimuli-responsive spherical nanostructures constructed from supramolecular metallodendrimers via hierarchical self-assembly, J. Am. Chem. Soc. 136(2014) 5993-6001.

    32. [32] G.Z. Zhao, L.J. Chen, W. Wang, et al., Stimuli-responsive supramolecular gels through hierarchical self-assembly of discrete rhomboidal metallacycles, Chem. Eur. J. 19(2013) 10094-10100.

    33. [33] Y. Feng, Z.T. Liu, J. Liu, et al., Peripherally dimethyl isophthalate-functionalized poly(benzyl ether) dendrons:a new kind of unprecedented highly efficient organogelators, J. Am. Chem. Soc. 131(2009) 7950-7951.

    34. [34] Y. Lu, J. Liu, Smart nanomaterials inspired by biology:dynamic assembly of errorfree nanomaterials in response to multiple chemical and biological stimuli, Acc. Chem. Res. 43(2007) 315-323.

    35. [35] B. Rybtchinski, Adaptive supramolecular nanomaterials based on strong noncovalent interactions, ACS Nano 5(2011) 6791-6818.

    36. [36] K.K. Cotí, M.E. Belowich, M. Liong, et al., Mechanised nanoparticles for drug delivery, Nanoscale 1(2009) 16-39.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2016-03-17
  • 收稿日期:  2016-02-01
  • 修回日期:  2016-03-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章