Structure of Pro4H+ investigated by infrared photodissociation (IRPD) spectroscopy and theoretical calculations

Ru-Xia Feng Lei Mu Shu-Mei Yang Xiang-Lei Kong

引用本文: Ru-Xia Feng,  Lei Mu,  Shu-Mei Yang,  Xiang-Lei Kong. Structure of Pro4H+ investigated by infrared photodissociation (IRPD) spectroscopy and theoretical calculations[J]. Chinese Chemical Letters, 2016, 27(4): 593-596. shu
Citation:  Ru-Xia Feng,  Lei Mu,  Shu-Mei Yang,  Xiang-Lei Kong. Structure of Pro4H+ investigated by infrared photodissociation (IRPD) spectroscopy and theoretical calculations[J]. Chinese Chemical Letters, 2016, 27(4): 593-596. shu

Structure of Pro4H+ investigated by infrared photodissociation (IRPD) spectroscopy and theoretical calculations

  • 基金项目:

    Financial support from the National Natural Science Foundation of China (Nos. 21172121, 21475065) and the Fundamental Research Funds for the Central Universities is gratefully acknowledged.

摘要: Combining with electrospray ionization (ESI) mass spectrometry, infrared photodissociation (IRPD) spectroscopy is a powerful method to study structures of cluster ions in the gas phase. In this paper, infrared photodissociation spectrum of Pro4H+ in the range of 2700-3600 cm-1 was obtained experimentally. Both theoretically predicted spectra of the two most stable isomers of Pro4-1 and Pro4-2 obtained at the level of M062X/6-31+G(d, p) are in good consistent with the experimental results. The two isomers have similar structures and close energies. Both of them only consist of zwitterionic units, indicating the strong salt-bridged interactions inside the clusters. And the calculated collision cross section (ccs) of Pro4-1 is found to be very close to the experimental result previously reported.

English

    1. [1] H.B. Oh, C. Lin, H.Y. Hwang, H. Zhai, et al., Infrared photodissociation spectroscopy of electrosprayed ions in a Fourier transform mass spectrometer, J. Am. Chem. Soc. 127(2005) 4076-4083.

    2. [2] J.R. Eyler, Infrared multiple photon dissociation spectroscopy of ions in penning traps, Mass Spectrom. Rev. 28(2009) 448-467.

    3. [3] N.C. Polfer, J. Oomens, Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance, Mass Spectrom. Rev. 28(2009) 468-494.

    4. [4] N.C. Polfer, Infrared multiple photon dissociation spectroscopy of trapped ions, Chem. Soc. Rev. 40(2011) 2211-2221.

    5. [5] R. Wu, T.B. McMahon, Infrared multiple photon dissociation spectra of proline and glycine proton-bound homodimers. Evidence for zwitterionic structure, J. Am. Chem. Soc. 129(2007) 4864-4865.

    6. [6] X.L. Kong, I.A. Tsai, S. Sabu, et al., Progressive stabilization of zwitterionic structures in[H(Ser)2-8] + studied by infrared photodissociation spectroscopy, Angew. Chem. Int. Ed. 45(2006) 4130-4134.

    7. [7] M.F. Bush, J. Oomens, R.J. Saykally, E.R. Williams, Effects of alkaline earth metal ion complexation on amino acid zwitterion stability:results from infrared action spectroscopy, J. Am. Chem. Soc. 130(2008) 6463-6471.

    8. [8] R.C. Dunbar, J.D. Steill, J. Oomens, Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions, Phys. Chem. Chem. Phys. 12(2010) 13383-13393.

    9. [9] R. Wu, R.A. Marta, J.K. Matens, K.R. Eldridge, T.B. McMahon, Experimental and theoretical investigation of the proton-bound dimer of lysine, J. Am. Soc. Mass. Spectrom. 22(2011) 1651-1659.

    10. [10] U.J. Lorenz, T.R. Rizzo, Multiple isomers and protonation sites of the phenylalanine/serine dimer, J. Am. Chem. Soc. 134(2012) 11053-11055.

    11. [11] Y.J. Alahmadi, A. Gholami, T.D. Fridgen, The protonated and sodiated dimers of proline studied by IRMPD spectroscopy in the N-H and O-H stretching region and computational methods, Phys. Chem. Chem. Phys. 16(2014) 26855-26863.

    12. [12] P.B. Armentrout, M.T. Rodgers, J. Oomens, J.D. Steill, Infrared multiphoton dissociation spectroscopy of cationized serine:effects of alkali-metal cation size on gas-phase conformation, J. Phys. Chem. A 112(2008) 2258-2267.

    13. [13] X.L. Kong, C. Lin, G. Infusini, et al., Numerous isomers of serine octamer ions characterized by infrared photodissociation spectroscopy, ChemPhysChem 10(2009) 2603-2606.

    14. [14] G.H. Liao, Y.J. Yang, X.L. Kong, Chirality effects on proline-substituted serine octamers revealed by infrared photodissociation spectroscopy, Phys. Chem. Chem. Phys. 16(2014) 1554-1562.

    15. [15] X.L. Kong, Reinvestigation of the structure of protonated lysine dimer, J. Am. Soc. Mass. Spectrom. 25(2014) 1-5.

    16. [16] H. Yin, X.L. Kong, Structure of protonated threonine dimers in the gas phase:saltbridged or charge-solvated, J. Am. Soc. Mass. Spectrom. 26(2015) 1455-1461.

    17. [17] R.G. Cooks, D. Zhang, K.J. Koch, F.C. Gozzo, M.N. Eberlin, Chiroselective selfdirected octamerization of serine:implications for homochirogenesis, Anal. Chem. 73(2001) 3646-3655.

    18. [18] Z. Takats, S.C. Nanita, R.G. Cooks, G. Schlosser, K. Vekey, Atmospheric pressure gas-phase H/D exchange of serine octamers, Anal. Chem. 75(2003) 6147-6154.

    19. [19] Z. Takats, S.C. Nanita, R.G. Cooks, Serine octamer reactions:indicators of prebiotic relevance, Angew. Chem. Int. Ed. 42(2003) 3521-3523.

    20. [20] S.C. Nanita, R.G. Cooks, Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions, Angew. Chem. Int. Ed. 45(2006) 554-559.

    21. [21] R.R. Julian, S. Myung, D.E. Clemmer, Do homochiral aggregates have an entropic advantage? J. Phys. Chem. B 109(2005) 440-444.

    22. [22] S. Myung, K.P. Lorton, S.I. Merenbloom, et al., Evidence for spontaneous resolution of icosahedral proline, J. Am. Chem. Soc. 128(2007) 15988-15989.

    23. [23] A.E. Holliday, N. Atlasevich, S. Myung, et al., Oscillations of chiral preference in proline clusters, J. Phys. Chem. A 117(2013) 1035-1041.

    24. [24] A.E. Holliday, N. Atlasevich, S.J. Valentine, D.E. Clemmer, Chirality and packing in small proline clusters, J. Phys. Chem. A 116(2012) 11442-11446.

    25. [25] R.B. Cody, R.E. Hein, S.D. Goodman, A.G. Marshall, Stored waveform inverse fourier transform excitation for obtaining increased parent ion selectivity in collisionally activated dissociation:preliminary results, Rapid Commun. Mass Spectrom. 1(1987) 99-102.

    26. [26] X. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functional, Theor. Chem. Account. 120(2008) 215-241.

    27. [27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian09, Gaussian Inc, Wallingford, CT, 2009.

    28. [28] A.A. Shvartsburg, M.F. Jarrold, An exact hard-spheres scattering model for the mobilities of polyatomic ions, Chem. Phys. Lett. 261(1996) 86-91.

    29. [29] M.F. Mesleh, J.M. Hunter, A.A. Shvartsburg, G.C. Schatz, M.F. Jarrold, Structural information from ion mobility measurements:effects of the long-range potential, J. Phys. Chem. 100(1996) 16082-16086.

    30. [30] Z. Slanina, Equilibriumisomericmixtures:potential energy hypersurfaces as the origin of the overall thermodynamics and kinetics, Int. Rev. Phys. Chem. 6(1987) 251-267.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2016-03-04
  • 收稿日期:  2016-01-15
  • 修回日期:  2016-02-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章