Removal of residual nitrate ion from bioactive calcium silicate through soaking

Yong-Sen Sun Ai-Ling Li Hui-Hui Ren Xin-Ping Zhang Chao Wang Dong Qiu

引用本文: Yong-Sen Sun,  Ai-Ling Li,  Hui-Hui Ren,  Xin-Ping Zhang,  Chao Wang,  Dong Qiu. Removal of residual nitrate ion from bioactive calcium silicate through soaking[J]. Chinese Chemical Letters, 2016, 27(4): 579-582. shu
Citation:  Yong-Sen Sun,  Ai-Ling Li,  Hui-Hui Ren,  Xin-Ping Zhang,  Chao Wang,  Dong Qiu. Removal of residual nitrate ion from bioactive calcium silicate through soaking[J]. Chinese Chemical Letters, 2016, 27(4): 579-582. shu

Removal of residual nitrate ion from bioactive calcium silicate through soaking

  • 基金项目:

    This work was supported by NSFC (Nos. 81470101, 51173193) and Royal Society/Natural Science Foundation of China international exchange (No. 51411130151).

摘要: Bioactive calcium silicates prepared by sol-gel routes mainly use calcium nitrate as the calcium precursor. However, the toxic nitrate ions are usually removed by calcination (i.e. 550℃ or over), which poses great challenge for the in situ preparation of inorganic/polymer composites, as polymer moieties could not survive such temperatures. In this study, we prepared 70Si30Ca (70 mol% SiO2 and 30 mol% CaO) bioactive glass at low temperatures where polymer could survive (i.e. 200℃ and 350℃), and proposed to remove the residual nitrate ions through soaking. Deionized water and simulated body fluid (SBF) were employed as the soaking medium. The results showed that the residual nitrate ions could be removed as quickly as 0.5 h while maintain the bioactivity of the samples. This technique may open the possibility of preparing sol-gel derived bioactive glass/polymer hybrids in situ with reduced potential toxicity.

English

    1. [1] P. Sepulveda, J.R. Jones, L.L. Hench, Bioactive sol-gel foams for tissue repair, J. Biomed. Mater. Res. 59(2002) 340-348.

    2. [2] L.L. Hench, Bioceramics:from concept to clinic, J. Am. Ceram. Soc. 74(1991) 1487-1510.

    3. [3] L.L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med. 17(2006) 967-968.

    4. [4] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenle, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 5(1971) 117-141.

    5. [5] P. Saravanapavan, L.L. Hench, Mesoporous calcium silicate glasses. I. Synthesis, J. Non-Cryst. Solids 318(2003) 1-13.

    6. [6] A.L. Li, D. Qiu, Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses, J. Mater. Sci. Mater. Med. 22(2011) 2685-2691.

    7. [7] E.M. Valliant, C.A. Turdean-Ionescu, J.V. Hanna, M.E. Smith, J.R. Jones, Role of pH and temperature on silica network formation and calcium incorporation into sol-gel derived bioactive glasses, J. Mater. Chem. 22(2012) 1613-1619.

    8. [8] M.M. Pereira, J.R. Jones, R.L. Orefice, L.L. Hench, Preparation of bioactive glasspolyvinyl alcohol hybrid foams by the sol-gel method, J. Mater. Sci. Mater. Med. 16(2005) 1045-1050.

    9. [9] L.C. Bandeira, K.J. Ciuffi, P.S. Calefi, E.J. Nassar, Silica matrix doped with calcium and phosphate by sol-gel, Adv. Biosci. Biotechnol. 1(2010) 200-207.

    10. [10] A. Mori, C. Ohtsuki, T. Miyazaki, et al., Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate, J. Mater. Sci. Mater. Med. 16(2005) 713-718.

    11. [11] S. Lin, C. Ionescu, K.J. Pike, M.E. Smith, J.R. Jones, Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass, J. Mater. Chem. 19(2009) 1276-1282.

    12. [12] J.R. Jones, L.M. Ehrenfried, L.L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 27(2006) 964-973.

    13. [13] M.Y. Koh, H.M. Kim, C. Ohtsuki, Synthesis of a bi-structured hybrid in a CaO-SiO2-PTMO system and in vitro evaluation on its potential of bone-bonding property, Mater. Sci. Eng. 30(2010) 454-459.

    14. [14] Y.S. Sun, A.L. Li, F.J. Xu, D. Qiu, A low-temperature sol-gel route for the synthesis of bioactive calcium silicates, Chin. Chem. Lett. 24(2013) 170-172.

    15. [15] A.L. Li, H. Shen, H.H. Ren, et al., Bioactive organic/inorganic hybrids with improved mechanical performance, J. Mater. Chem. B 3(2015) 1390-1397.

    16. [16] P. Saravanapavan, J.R. Jones, S. Verrier, et al., Binary CaO-SiO2 gel-glasses for biomedical applications, Biomed. Mater. Eng. 14(2004) 467-486.

    17. [17] S. Falaize, S. Radin, P. Ducheyne, In vitro behavior of silica-based xerogels intended as controlled release carriers, J. Am. Ceram. Soc. 82(1999) 969-976.

    18. [18] A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceram. Int. 38(2012) 177-188.

    19. [19] J.P. Zhong, D.C. Greenspan, Processing and properties of sol-gel bioactive glasses, J. Biomed. Mater. Res. 53(2000) 694-701.

    20. [20] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24(1990) 721-734.

    21. [21] R.J. Newport, L.J. Skipper, D. Carta, et al., The use of advanced diffraction methods in the study of the structure of a bioactive calcia:silica sol-gel glass, J. Mater. Sci. Mater. Med. 17(2006) 1003-1010.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2016-03-02
  • 收稿日期:  2016-01-14
  • 修回日期:  2016-01-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章