Citation: Rong Hu, Sheng-Liang Li, Hao-Tian Bai, Yun-Xia Wang, Li-Bing Liu, Feng-Ting Lv, Shu Wang. Regulation of oxidative stress inside living cells through polythiophene derivatives[J]. Chinese Chemical Letters, 2016, 27(4): 545-549.
Regulation of oxidative stress inside living cells through polythiophene derivatives
English
Regulation of oxidative stress inside living cells through polythiophene derivatives
-
Key words:
- Angiotensin II
- / Oxidative stress
- / Conjugated polymer
- / Dihydropiridine
- / Regulation
-
-
[1] R. Kumar, C.M. Thomas, Q.C. Yong, W. Chen, K.M. Baker, The intracrine renin-angiotensin system, Clin. Sci. 123(2012) 273-284.
-
[2] A.R. Brasier, A. Recinos, M.S. Eledrisi, Vascular inflammation and the renin-angiotensin system, Arterioscler. Thromb. Vasc. Biol. 22(2002) 1257-1266.
-
[3] C. Unterberg, H. Kreuzer, A.B. Buchwald, Renin-angiotensin system and cardiovascular diseases, Med. Klin. 93(1998) 416-425.
-
[4] C. Tikellis, R.J. Pickering, D. Tsorotes, et al., Activation of the renin-angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse, Hypertension 60(2012) 98-105.
-
[5] H. Lu, L.A. Cassis, A. Daugherty, Atherosclerosis and arterial blood pressure in mice, Curr. Drug Targets 8(2007) 1181-1189.
-
[6] A.M. Garrido, K.K. Griendling, NADPH oxidases and angiotensin II receptor signaling, Mol. Cell. Endocrinol. 302(2009) 148-158.
-
[7] Q. Felty,W.C.Xiong,D.M. Sun,etal.,Estrogen-inducedmitochondrial reactiveoxygen species as signal-transducing messengers, Biochemistry 44(2005) 6900-6909.
-
[8] H. Sauer, M. Wartenberg, J. Hescheler, Reactive oxygen species as intracellular messengers during cell growth and differentiation, Cell. Physiol. Biochem. 11(2001) 173-186.
-
[9] B.C. Dickinson, C.J. Chang, A targetable fluorescent probe for imaging hydrogen peroxide in themitochondria of living cells, J.Am. Chem. Soc.130(2008) 9638-9639.
-
[10] W. Drö ge, Free radicals in the physiological control of cell function, Physiol. Rev. 82(2002) 47-95.
-
[11] T. Volk, M. Hensel, H. Schuster, W.J. Kox, Secretion of MCP-1 and IL-6 by cytokine stimulated production of reactive oxygen species in endothelial cells, Mol. Cell. Biochem. 206(2000) 105-112.
-
[12] C.P. Hu, A. Dandapat, J.L. Mehta, Angiotensin II induces capillary formation from endothelial cells via the LOX-1-dependent redox-sensitive pathway, Hypertension 50(2007) 952-957.
-
[13] M. Nahrendorf, E. Keliher, P. Panizzi, et al., 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis, JACC-Cardiovasc. Imag. 2(2009) 1213-1222.
-
[14] M.F. Navedo, L.F. Santana, CaV 1.2 sparklets in heart and vascular smooth muscle, J. Mol. Cell. Cardiol. 58(2013) 67-76.
-
[15] A. Neely, P. Hidalgo, Structure-function of proteins interacting with the α1 poreforming subunit of high-voltage-activated calcium channels, Front. Physiol. 5(2014) 209.
-
[16] R. Berkels, T. Breitenbach, H. Bartels, et al., Different antioxidative potencies of dihydropyridine calcium channel modulators in various models, Vascul. Pharmacol. 42(2005) 145-152.
-
[17] H. Toba, T. Shimizu, S. Miki, et al., Channel blockers reduce angiotensin II-induced superoxide generation and inhibit lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells, Hypertens. Res. 29(2006) 105-116.
-
[18] N. Ishii, T. Matsumura, S. Shimoda, E. Araki, Anti-atherosclerotic potential of dihydropyridine calcium channel blockers, J. Atheroscler. Thromb. 19(2012) 693-704.
-
[19] J.L. Yeh, J.H. Hsu, J.C. Liang, I.-J. Chen, S.-F. Liou, Lercanidipine and labedipinedilol-A attenuate lipopolysaccharide/interferon-gamma-induced inflammation in rat vascular smooth muscle cells through inhibition of HMGB1 release and MMP-2, 9 activities, Atherosclerosis 226(2013) 364-372.
-
[20] B. Wang, J.Z. Song, H.X. Yuan, et al., Multicellular assembly and light-regulation of cell-cell communication by conjugated polymer materials, Adv. Mater. 26(2014) 2371-2375.
-
[21] C.L. Zhu, L.B. Liu, Q. Yang, F.T. Lv, S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chem. Rev. 112(2012) 4687-4735.
-
[22] A.V. Ambade, B.S. Sandanaraj, A. Klaikherd, S. Thayumanavan, Fluorescent polyelectrolytes as protein sensors, Polym. Int. 56(2007) 474-481.
-
[23] H.-A. Ho, A. Najari, M. Leclerc, Optical detection of DNA and proteins moth cationic polythiophenes, Acc. Chem. Res. 41(2008) 168-178.
-
[24] S. Kim, C.-K. Lim, J. Na, et al., Conjugated polymer nanoparticles for biomedical in vivo imaging, Chem. Commun. 46(2010) 1617-1619.
-
[25] F. Qiu, Q. Zhu, G.S. Tong, et al., Highly fluorescent core-shell hybrid nanoparticles templated by a unimolecular star conjugated polymer for a biological tool, Chem. Commun. 48(2012) 11954-11956.
-
[26] B.Q. Bao, N.J. Tao, D.L. Yang, et al., A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries, Chem. Commun. 49(2013)10263-10265.
-
[27] K. Liu, Y.L. Liu, Y.X. Yao, et al., Supramolecular photosensitizers with enhanced antibacterial efficiency, Angew. Chem. Int. Ed. 52(2013) 8285-8289.
-
[28] C.F. Xing, Q.L. Xu, H.W. Tang, L.B. Liu, S. Wang, Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity, J. Am. Chem. Soc. 131(2009) 13117-13124.
-
[29] C.L. Zhu, Q. Yang, L.B. Liu, et al., Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells, Adv. Mater. 23(2011) 4805-4810.
-
[30] R. Hu, F.Y. Wang, S.L. Li, et al., ROS self-scavenging polythiophene materials for cell imaging, Polym. Chem. 6(2015) 8244-8247.
-
计量
- PDF下载量: 0
- 文章访问数: 0
- HTML全文浏览量: 0