Vibrational spectroscopic identification of isoprene, pinenes and their mixture

Pan An Cheng-Qian Yuan Xian-Hu Liu De-Bao Xiao Zhi-Xun Luo

引用本文: Pan An,  Cheng-Qian Yuan,  Xian-Hu Liu,  De-Bao Xiao,  Zhi-Xun Luo. Vibrational spectroscopic identification of isoprene, pinenes and their mixture[J]. Chinese Chemical Letters, 2016, 27(4): 527-534. shu
Citation:  Pan An,  Cheng-Qian Yuan,  Xian-Hu Liu,  De-Bao Xiao,  Zhi-Xun Luo. Vibrational spectroscopic identification of isoprene, pinenes and their mixture[J]. Chinese Chemical Letters, 2016, 27(4): 527-534. shu

Vibrational spectroscopic identification of isoprene, pinenes and their mixture

  • 基金项目:

    This work is supported by Young Professionals Program in Institute of Chemistry, Chinese Academy of Sciences (No. Y3297B1261). Also we thank the national Thousand Youth Talents Program and financial support from CAS project (Nos. Y31M0112C1 and Y5294512C1).

摘要: Here we show a study of vibrational spectroscopic identification of a few typical organic compounds which are known as the main sources of organic aerosols (OAs) particle matter in air pollution. Raman and IR spectra of isoprene, terpenoids, pinenes and their mixture are meticulously examined, showing distinguishable intrinsic vibrational spectroscopic fingerprints for these chemicals, respectively. As a reference, first-principles calculations of Raman and infrared activities are also conducted. It is interestingly found that, the experimental spectra are peak-to-peak consistent with the DFT (Density Functional Theory)-calculated vibrational activities. Also found is that, in a certain case such as for β-pinene, a dimer model, rather than an isolated single molecular model, reproduces the experimental results, indicating unneglected intermolecular interactions. Starting with this study, we are endeavoring to advocate a database of Raman/IR fingerprint spectra for OA haze identification.

English

    1. [1] M. Hallquist, J.C. Wenger, U. Baltensperger, et al., The formation, properties and impact of secondary organic aerosol:current and emerging issues, Atmos. Chem. Phys. 9(2009) 5155-5236.

    2. [2] M.O. Andreae, A new look at aging aerosols, Science 326(2009) 1493-1494.

    3. [3] D.W. Dockery, C.A. Pope, X.P. Xu, et al., An Association between air pollution and mortality in six U.S. Cities, N. Engl. J. Med. 329(1993) 1753-1759.

    4. [4] J.C. Chow, J.G. Watson, J.L. Mauderly, et al., Health effects of fine particulate air pollution:lines that connect, J. Air Waste Manage. Assoc. 56(2006) 1368-1380.

    5. [5] M. Kanakidou, J.H. Seinfeld, S.N. Pandis, et al., Organic aerosol and global climate modelling:a review, Atmos. Chem. Phys. 5(2005) 1053-1123.

    6. [6] D. Chand, R. Wood, T.L. Anderson, S.K. Satheesh, R.J. Charlson, Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nat. Geosci. 2(2009) 181-184.

    7. [7] J.C. Fyfe, K. von Salzen, N.P. Gillett, et al., One hundred years of Arctic surface temperature variation due to anthropogenic influence, Sci. Rep. 3(2013) 2645.

    8. [8] J.E. Penner, X.Q. Dong, Y. Chen, Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature 427(2004) 231-234.

    9. [9] D.V. Spracklen, B. Bonn, K.S. Carslaw, Boreal forests, aerosols and the impacts on clouds and climate, Philos. Trans. R. Soc. London, Ser. A 366(2008) 4613-4626.

    10. [10] K.S. Carslaw, O. Boucher, D.V. Spracklen, et al., A review of natural aerosol interactions and feedbacks within the Earth system, Atmos. Chem. Phys. 10(2010) 1701-1737.

    11. [11] P. Paasonen, A. Asmi, T. Petäjä, et al., Warming-induced increase in aerosol number concentration likely to moderate climate change, Nat. Geosci. 6(2013) 438-442.

    12. [12] J.R. Odum, T.P.W. Jungkamp, R.J. Griffin, et al., Aromatics, reformulated gasoline, and atmospheric organic aerosol formation, Environ. Sci. Technol. 31(1997) 1890-1897.

    13. [13] C.A. Stroud, P.A. Makar, D.V. Michelangeli, et al., Simulating organic aerosol formation during the photooxidation of toluene/NOx mixtures:Comparing the equilibrium and kinetic assumption, Environ. Sci. Technol. 38(2004) 1471-1479.

    14. [14] A.G. Xia, D.V. Michelangeli, P.A. Makar, Box model studies of the secondary organic aerosol formation under different HC/NOx conditions using the subset of the Master Chemical Mechanism for α-pinene oxidation, J. Geophys. Res. 113(2008) D10301.

    15. [15] M.E. Jenkin, D.E. Shallcross, J.N. Harvey, Development and application of a possible mechanism for the generation of cis-pinic acid from the ozonolysis of α- and β-pinene, Atmos. Environ. 34(2000) 2837-2850.

    16. [16] M.E. Jenkin, Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3, Atmos. Chem. Phys. 4(2004) 1741-1757.

    17. [17] M. Capouet, J.F. Müller, K. Ceulemans, et al., Modeling aerosol formation in alphapinene photo-oxidation experiments, J. Geophys. Res. 113(2008) D02308.

    18. [18] I.J. George, J.P.D. Abbatt, Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals, Nat. Chem. 2(2010) 713-722.

    19. [19] J.R. Odum, T. Hoffmann, F. Bowman, et al., Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol. 30(1996) 2580-2585.

    20. [20] T. Jokinen, M. Sipilä, H. Junninen, et al., Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF, Atmos. Chem. Phys. 12(2012) 4117-4125.

    21. [21] M. Ehn, J.A. Thornton, E. Kleist, et al., A large source of low-volatility secondary organic aerosol, Nature 506(2014) 476-479.

    22. [22] A.K.H. Lau, Z.B. Yuan, J.Z. Yu, P.K.K. Louie, Source apportionment of ambient volatile organic compounds in Hong Kong, Sci. Total Environ. 408(2010) 4138-4149.

    23. [23] P.Q. Fu, K. Kawamura, C.M. Pavuluri, T. Swaminathan, J. Chen, Molecular characterization of urban organic aerosol in tropical India:contributions of primary emissions and secondary photooxidation, Atmos. Chem. Phys. 10(2010) 2663-2689.

    24. [24] A. Hodzic, J.L. Jimenez, S. Madronich, et al., Modeling organic aerosols in a megacity:potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation, Atmos. Chem. Phys. 10(2010) 5491-5514.

    25. [25] P.F. Liu, N. Abdelmalki, H.M. Hung, et al., Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene, Atmos. Chem. Phys. 15(2015) 1435-1446.

    26. [26] A.T. Lambe, C.D. Cappa, P. Massoli, et al., Relationship between oxidation level and optical properties of secondary organic aerosol, Environ. Sci. Technol. 47(2013) 6349-6357.

    27. [27] M. Zhong, M. Jang, Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere, Atmos. Environ. 45(2011) 4263-4271.

    28. [28] M. Zhong, M. Jang, A. Oliferenko, G.G. Pillai, A.R. Katritzky, The SOA formation model combined with semiempirical quantum chemistry for predicting UV-vis absorption of secondary organic aerosols, Phys. Chem. Chem. Phys. 14(2012) 9058-9066.

    29. [29] T. Nakayama, Y. Matsumi, K. Sato, et al., Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene, J. Geophys. Res. 115(2010) D24204.

    30. [30] K. Li, W.G. Wang, M.F. Ge, J.J. Li, D. Wang, Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons, Sci. Rep. 4(2014) 4922.

    31. [31] T. Nakayama, K. Sato, Y. Matsumi, et al., Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene, Atmos. Chem. Phys. 13(2013) 531-545.

    32. [32] C. Lee, W.T. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B37(1988) 785-789.

    33. [33] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A:At. Mol. Opt. Phys. 38(1988) 3098-3100.

    34. [34] M.J. Alam, S. Ahmad, FTIR FT-Raman, UV-visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers, Spectrochim. Acta, A:Mol. Biomol. Spectrosc. 136(2015) 961-978.

    35. [35] B. Morzyk-Ociepa, K. Dysz, I. Turowska-Tyrk, D. Michalska, X-ray crystal structure, vibrational spectra and DFT calculations of 3-chloro-7-azaindole:a case of dual N-H...N hydrogen bonds in dimers, Spectrochim. Acta, A:Mol. Biomol. Spectrosc. 136(2015) 405-415.

    36. [36] Ł. Wołoszyn, M.M. Ilczyszyn, V. Kinzhybalo, X-ray diffraction, spectroscopic (IR, Raman) and DSC studies of bis (betainium) p-toluenesulfonate monohydrate crystal, Vib. Spectrosc. 76(2015) 6-21.

    37. [37] S. Alen, D. Sajan, K.J. Sabu, et al., Vibrational spectral analysis, electronic absorption and non-linear optical behavior of (E)-1-(2,4,6-trimethoxyphenyl)pent-1-en-3-one, Vib. Spectrosc. 79(2015) 1-10.

    38. [38] H.W. Wilson, The infrared and Raman spectra of α- and β-pinenes, Appl. Spectrosc. 30(1976) 209-212.

    39. [39] S. Qiu, G.N. Li, P. Liu, et al., Chirality transition in the epoxidation of (-)-α-pinene and successive hydrolysis studied by Raman optical activity and DFT, Phys. Chem. Chem. Phys. 12(2010) 3005-3013.

    40. [40] Z.X. Luo, X. Cheng, Y. Luo, et al., Photoassisted magnetization of fullerene C60 with magnetic-field trapped Raman scattering, J. Am. Chem. Soc. 134(2012) 1130-1135.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2016-02-01
  • 收稿日期:  2015-12-07
  • 修回日期:  2016-01-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章