The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications

Yan-Kai Li Jun-Ji Zhang Zi-Jun Bian You-Xin Fu Fei Liu Chen-Hui Wang Xiang Ma Jun Hu Hong-Lai Liu

引用本文: Yan-Kai Li,  Jun-Ji Zhang,  Zi-Jun Bian,  You-Xin Fu,  Fei Liu,  Chen-Hui Wang,  Xiang Ma,  Jun Hu,  Hong-Lai Liu. The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications[J]. Chinese Chemical Letters, 2016, 27(4): 518-522. shu
Citation:  Yan-Kai Li,  Jun-Ji Zhang,  Zi-Jun Bian,  You-Xin Fu,  Fei Liu,  Chen-Hui Wang,  Xiang Ma,  Jun Hu,  Hong-Lai Liu. The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications[J]. Chinese Chemical Letters, 2016, 27(4): 518-522. shu

The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications

  • 基金项目:

    This work was financially supported by National Basic Research Program of China (No. 2013CB733501), National Natural Science Foundation of China (Nos. 91334203, 21376074, 21402050) and the Fundamental Research Funds for the Central Universities of China (No. WK1314008).

摘要: Infinite coordination polymers are recognized as excellent platform for functionalization. Dithienylethene motifs, which are one of the most attractive functional moieties, were incorporated into an infinite coordination polymer, to deliver a "smart" porous material that can response to external stimuli. The obtained dithienylethene-based infinite coordination polymers (named Cu-DTEDBA) share the advantages of both infinite coordination polymers (porosity and stability) and dithienylethene motifs (photochromism). The physical and chemical properties of Cu-DTEDBA were characterized by FTIR, TEM, SEM, XRD, TGA, UV-vis, EDX and BET. Moreover, the combination of dithienylethene and infinite coordination polymers gives rise to a synergistic effect, which induces functional behaviors of ammonia sensor applications. Both open and closed forms of Cu-DTEDBA exhibit distinct colorimetric change upon exposure to gaseous ammonia, which is not observed in dithienylethene free molecules.

English

    1. [1] M. Oh, C.A. Mirkin, Chemically tailorable colloidal particles from infinite coordination polymers, Nature 438(2005) 651-654.

    2. [2] Y.M. Jeon, J. Heo, C.A. Mirkin, Dynamic interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers, J. Am. Chem. Soc. 129(2007) 7480-7481.

    3. [3] W. Cho, H.J. Lee, M. Oh, Growth-controlled formation of porous coordination polymer particles, J. Am. Chem. Soc. 130(2008) 16943-16946.

    4. [4] X.P. Sun, S.J. Dong, E.K. Wang, Coordination-induced formation of submicrometerscale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature, J. Am. Chem. Soc. 127(2005) 13102-13103.

    5. [5] A.M. Spokoyny, D. Kim, A. Sumrein, C.A. Mirkin, Infinite coordination polymer nano- and microparticle structures, Chem. Soc. Rev. 38(2009) 1218-1227.

    6. [6] M. Oh, C.A. Mirkin, Ion exchange as a way of controlling the chemical compositions of nano- and microparticles made from infinite coordination polymers, Angew. Chem. Int. Ed. 45(2006) 5492-5494.

    7. [7] L. Zhang, X. Gao, L.F. Yang, P. Yu, L.Q. Mao, Photodecomposition of ferrocenedicarboxylic acid in methanol to form an electroactive infinite coordination polymer and its application in bioelectrochemistry, ACS Appl. Mater. Interfaces 5(2013) 8120-8124.

    8. [8] L.P. Sun, S.Y. Niu, J. Jin, G.D. Yang, L. Ye, Synthesis, structure and surface photovoltage of a series of NiII coordination polymers, Eur. J. Inorg. Chem. 2006(2006) 5130-5137.

    9. [9] J.C. Zhao, Y.M. Guo, H.L. Guo, et al., Solvethermal synthesis of mono- and bimetallic flower-like infinite coordination polymer and formation mechanism, Inorg. Chem. Commun. 18(2012) 21-24.

    10. [10] L.X. Dai, Chiral metal-organic assemblies-a new approach to immobilizing homogeneous asymmetric catalysts, Angew. Chem. Int. Ed. 43(2004) 5726-5729.

    11. [11] Y.M. Jeon, G.S. Armatas, J. Heo, M.G. Kanatzidis, C.A. Mirkin, Amorphous infinite coordination polymer microparticles:a new class of selective hydrogen storage materials, Adv. Mater. 20(2008) 2105-2110.

    12. [12] P.C. Huang, J.J. Mao, L.F. Yang, P. Yu, L.Q. Mao, Bioelectrochemically active infinite coordination polymer nanoparticles:one-pot synthesis and biosensing property, Chem. A:Eur. J. 17(2011) 11390-11393.

    13. [13] W.J. Rieter, K.M. Pott, K.M.L. Taylor, W.B. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery, J. Am. Chem. Soc. 130(2008) 11584-11585.

    14. [14] X.G. Hu, X.L. Li, S.I. Yang, Novel photochromic infinite coordination polymer particles derived from a diarylethene photoswitch, Chem. Commun. 51(2015) 10636-10639.

    15. [15] S. Swaminathan, J. Garcia-Amorós, A. Fraix, et al., Photoresponsive polymer nanocarriers with multifunctional cargo, Chem. Soc. Rev. 43(2014) 4167-4178.

    16. [16] M.J. Hansen, W.A. Velema, M.M. Lerch, W. Szymanski, B.L. Feringa, Wavelengthselective cleavage of photoprotecting groups:strategies and applications in dynamic systems, Chem. Soc. Rev. 44(2015) 3358-3377.

    17. [17] Z.Y. Tian, A.D.Q. Li, Photoswitching-enabled novel optical imaging:innovative solutions for real-world challenges in fluorescence detections, Acc. Chem. Res. 46(2013) 269-279.

    18. [18] M.M. Russew, S. Hecht, Photoswitches:from molecules to materials, Adv. Mater. 22(2010) 3348-3360.

    19. [19] R. Gö stl, S. Hecht, Controlling covalent connection and disconnection with light, Angew. Chem. Int. Ed. 53(2014) 8784-8787.

    20. [20] A.M. Asadirad, S. Boutault, Z. Erno, N.R. Branda, Controlling a polymer adhesive using light and a molecular switch, J. Am. Chem. Soc. 136(2014) 3024-3027.

    21. [21] H.M.D. Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev. 41(2012) 1809-1825.

    22. [22] J. Broichhagen, J.A. Frank, D. Trauner, A roadmap to success in photopharmacology, Acc. Chem. Res. 8(2015) 1947-1960.

    23. [23] A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40(2011) 4422-4437.

    24. [24] T.T. Cao, X.Y. Yao, J. Zhang, Q.C. Wang, X. Ma, A cucurbit[8] uril recognized rigid supramolecular polymer with photo-stimulated responsiveness, Chin. Chem. Lett. 26(2015) 867-871.

    25. [25] V.I. Minkin, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds, Chem. Rev. 104(2004) 2751-2776.

    26. [26] R. Klajn, Spiropyran-based dynamic materials, Chem. Soc. Rev. 43(2014) 148-184.

    27. [27] W.J. Tan, X. Li, J.J. Zhang, H. Tian, A photochromic diarylethene dyad based on perylene diimide, Dyes Pigm. 89(2011) 260-265.

    28. [28] J.J. Zhang, Q. Zou, H. Tian, Photochromic materials:more than meets the eye, Adv. Mater. 25(2013) 378-399.

    29. [29] M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals:memories, switches, and actuators, Chem. Rev. 114(2014) 12174-12277.

    30. [30] M. Irie, Diarylethenes for memories and switches, Chem. Rev. 100(2000) 1685-1716.

    31. [31] K. Higashiguchi, K. Matsuda, M. Irie, Photochromic reaction of a fused dithienylethene:multicolor photochromism, Angew. Chem. Int. Ed. 42(2003) 3537-3540.

    32. [32] H. Tian, S.J. Yang, Recent progresses on diarylethene based photochromic switches, Chem. Soc. Rev. 33(2004) 85-97.

    33. [33] S.Q. Cui, S.Z. Pu, W.J. Liu, G. Liu, Synthesis and photochromic properties of a multiple responsive diarylethene and its selective binding affinity for copper(II) ion, Dyes Pigm. 91(2011) 435-441.

    34. [34] F. Luo, C.B. Fan, M.B. Luo, et al., Photoswitching CO2 capture and release in a photochromic diarylethene metal-organic framework, Angew. Chem. Int. Ed. 53(2014) 9298-9301.

    35. [35] J. Park, D.W. Feng, S. Yuan, H.C. Zhou, Photochromic metal-organic frameworks:reversible control of singlet oxygen generation, Angew. Chem. Int. Ed. 54(2015) 430-435.

    36. [36] D.G. Patel, I.M. Walton, J.M. Cox, et al., Photoresponsive porous materials:the design and synthesis of photochromic diarylethene-based linkers and a metal-organic framework, Chem. Commun. 50(2014) 2653-2656.

    37. [37] Y.C. Zhao, T. Wang, L.M. Zhang, Y. Cui, B.H. Han, Facile approach to preparing microporous organic polymers through benzoin condensation, ACS Appl. Mater. Interfaces 4(2012) 6975-6981.

    38. [38] M. Zhang, G.X. Feng, Z.G. Song, et al., Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds, J. Am. Chem. Soc. 136(2014) 7241-7244.

    39. [39] Y.Z. Liao, J. Weber, C.F.J. Faul, Conjugated microporous polytriphenylamine networks, Chem. Commun. 50(2014) 8002-8005.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2016-02-11
  • 收稿日期:  2015-12-23
  • 修回日期:  2016-01-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章