Citation: Yan-Kai Li, Jun-Ji Zhang, Zi-Jun Bian, You-Xin Fu, Fei Liu, Chen-Hui Wang, Xiang Ma, Jun Hu, Hong-Lai Liu. The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications[J]. Chinese Chemical Letters, 2016, 27(4): 518-522.
The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications
English
The magic of integration: Exploring the construction of dithienylethene-based infinite coordination polymers and their synergistic effect for gaseous ammonia probe applications
-
-
[1] M. Oh, C.A. Mirkin, Chemically tailorable colloidal particles from infinite coordination polymers, Nature 438(2005) 651-654.
-
[2] Y.M. Jeon, J. Heo, C.A. Mirkin, Dynamic interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers, J. Am. Chem. Soc. 129(2007) 7480-7481.
-
[3] W. Cho, H.J. Lee, M. Oh, Growth-controlled formation of porous coordination polymer particles, J. Am. Chem. Soc. 130(2008) 16943-16946.
-
[4] X.P. Sun, S.J. Dong, E.K. Wang, Coordination-induced formation of submicrometerscale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature, J. Am. Chem. Soc. 127(2005) 13102-13103.
-
[5] A.M. Spokoyny, D. Kim, A. Sumrein, C.A. Mirkin, Infinite coordination polymer nano- and microparticle structures, Chem. Soc. Rev. 38(2009) 1218-1227.
-
[6] M. Oh, C.A. Mirkin, Ion exchange as a way of controlling the chemical compositions of nano- and microparticles made from infinite coordination polymers, Angew. Chem. Int. Ed. 45(2006) 5492-5494.
-
[7] L. Zhang, X. Gao, L.F. Yang, P. Yu, L.Q. Mao, Photodecomposition of ferrocenedicarboxylic acid in methanol to form an electroactive infinite coordination polymer and its application in bioelectrochemistry, ACS Appl. Mater. Interfaces 5(2013) 8120-8124.
-
[8] L.P. Sun, S.Y. Niu, J. Jin, G.D. Yang, L. Ye, Synthesis, structure and surface photovoltage of a series of NiII coordination polymers, Eur. J. Inorg. Chem. 2006(2006) 5130-5137.
-
[9] J.C. Zhao, Y.M. Guo, H.L. Guo, et al., Solvethermal synthesis of mono- and bimetallic flower-like infinite coordination polymer and formation mechanism, Inorg. Chem. Commun. 18(2012) 21-24.
-
[10] L.X. Dai, Chiral metal-organic assemblies-a new approach to immobilizing homogeneous asymmetric catalysts, Angew. Chem. Int. Ed. 43(2004) 5726-5729.
-
[11] Y.M. Jeon, G.S. Armatas, J. Heo, M.G. Kanatzidis, C.A. Mirkin, Amorphous infinite coordination polymer microparticles:a new class of selective hydrogen storage materials, Adv. Mater. 20(2008) 2105-2110.
-
[12] P.C. Huang, J.J. Mao, L.F. Yang, P. Yu, L.Q. Mao, Bioelectrochemically active infinite coordination polymer nanoparticles:one-pot synthesis and biosensing property, Chem. A:Eur. J. 17(2011) 11390-11393.
-
[13] W.J. Rieter, K.M. Pott, K.M.L. Taylor, W.B. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery, J. Am. Chem. Soc. 130(2008) 11584-11585.
-
[14] X.G. Hu, X.L. Li, S.I. Yang, Novel photochromic infinite coordination polymer particles derived from a diarylethene photoswitch, Chem. Commun. 51(2015) 10636-10639.
-
[15] S. Swaminathan, J. Garcia-Amorós, A. Fraix, et al., Photoresponsive polymer nanocarriers with multifunctional cargo, Chem. Soc. Rev. 43(2014) 4167-4178.
-
[16] M.J. Hansen, W.A. Velema, M.M. Lerch, W. Szymanski, B.L. Feringa, Wavelengthselective cleavage of photoprotecting groups:strategies and applications in dynamic systems, Chem. Soc. Rev. 44(2015) 3358-3377.
-
[17] Z.Y. Tian, A.D.Q. Li, Photoswitching-enabled novel optical imaging:innovative solutions for real-world challenges in fluorescence detections, Acc. Chem. Res. 46(2013) 269-279.
-
[18] M.M. Russew, S. Hecht, Photoswitches:from molecules to materials, Adv. Mater. 22(2010) 3348-3360.
-
[19] R. Gö stl, S. Hecht, Controlling covalent connection and disconnection with light, Angew. Chem. Int. Ed. 53(2014) 8784-8787.
-
[20] A.M. Asadirad, S. Boutault, Z. Erno, N.R. Branda, Controlling a polymer adhesive using light and a molecular switch, J. Am. Chem. Soc. 136(2014) 3024-3027.
-
[21] H.M.D. Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev. 41(2012) 1809-1825.
-
[22] J. Broichhagen, J.A. Frank, D. Trauner, A roadmap to success in photopharmacology, Acc. Chem. Res. 8(2015) 1947-1960.
-
[23] A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40(2011) 4422-4437.
-
[24] T.T. Cao, X.Y. Yao, J. Zhang, Q.C. Wang, X. Ma, A cucurbit[8] uril recognized rigid supramolecular polymer with photo-stimulated responsiveness, Chin. Chem. Lett. 26(2015) 867-871.
-
[25] V.I. Minkin, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds, Chem. Rev. 104(2004) 2751-2776.
-
[26] R. Klajn, Spiropyran-based dynamic materials, Chem. Soc. Rev. 43(2014) 148-184.
-
[27] W.J. Tan, X. Li, J.J. Zhang, H. Tian, A photochromic diarylethene dyad based on perylene diimide, Dyes Pigm. 89(2011) 260-265.
-
[28] J.J. Zhang, Q. Zou, H. Tian, Photochromic materials:more than meets the eye, Adv. Mater. 25(2013) 378-399.
-
[29] M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals:memories, switches, and actuators, Chem. Rev. 114(2014) 12174-12277.
-
[30] M. Irie, Diarylethenes for memories and switches, Chem. Rev. 100(2000) 1685-1716.
-
[31] K. Higashiguchi, K. Matsuda, M. Irie, Photochromic reaction of a fused dithienylethene:multicolor photochromism, Angew. Chem. Int. Ed. 42(2003) 3537-3540.
-
[32] H. Tian, S.J. Yang, Recent progresses on diarylethene based photochromic switches, Chem. Soc. Rev. 33(2004) 85-97.
-
[33] S.Q. Cui, S.Z. Pu, W.J. Liu, G. Liu, Synthesis and photochromic properties of a multiple responsive diarylethene and its selective binding affinity for copper(II) ion, Dyes Pigm. 91(2011) 435-441.
-
[34] F. Luo, C.B. Fan, M.B. Luo, et al., Photoswitching CO2 capture and release in a photochromic diarylethene metal-organic framework, Angew. Chem. Int. Ed. 53(2014) 9298-9301.
-
[35] J. Park, D.W. Feng, S. Yuan, H.C. Zhou, Photochromic metal-organic frameworks:reversible control of singlet oxygen generation, Angew. Chem. Int. Ed. 54(2015) 430-435.
-
[36] D.G. Patel, I.M. Walton, J.M. Cox, et al., Photoresponsive porous materials:the design and synthesis of photochromic diarylethene-based linkers and a metal-organic framework, Chem. Commun. 50(2014) 2653-2656.
-
[37] Y.C. Zhao, T. Wang, L.M. Zhang, Y. Cui, B.H. Han, Facile approach to preparing microporous organic polymers through benzoin condensation, ACS Appl. Mater. Interfaces 4(2012) 6975-6981.
-
[38] M. Zhang, G.X. Feng, Z.G. Song, et al., Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds, J. Am. Chem. Soc. 136(2014) 7241-7244.
-
[39] Y.Z. Liao, J. Weber, C.F.J. Faul, Conjugated microporous polytriphenylamine networks, Chem. Commun. 50(2014) 8002-8005.
-
计量
- PDF下载量: 0
- 文章访问数: 0
- HTML全文浏览量: 0