Citation: Bin Wang, Hui Yang, Ya-Bo Xie, Yi-Bo Dou, Min-Jian Zhao, Jian-Rong Li. Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes[J]. Chinese Chemical Letters, 2016, 27(4): 502-506.
Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes
English
Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes
-
-
[1] J.T. Jia, L. Wang, F.X. Sun, et al., The adsorption and simulated separation of light hydrocarbons in isoreticular metal-organic frameworks based on dendritic ligands with different aliphatic side chains, Chemistry 20(2014) 9073-9080.
-
[2] L. Qin, Z.M. Ju, Z.J. Wang, et al., Interpenetrated metal-organic frameworks with selective gas adsorption and luminescent properties, Cryst. Growth Des. 14(2014) 2742-2746.
-
[3] J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev. 112(2012) 869-932.
-
[4] D. Liu, J.P. Lang, B.F. Abrahams, Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation, J. Am. Chem. Soc. 133(2011) 11042-11045.
-
[5] S. Pramanik, C. Zheng, X. Zhang, T.J. Emge, J. Li, New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds, J. Am. Chem. Soc. 133(2011) 4153-4155.
-
[6] S.R. Zhang, D.Y. Du, J.S. Qin, et al., A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metalorganic framework, Chemistry 20(2014) 3589-3594.
-
[7] M.M. Chen, X. Zhou, H.X. Li, X.X. Yang, J.P. Lang, Luminescent two-dimensional coordination polymer for selective and recyclable sensing of nitroaromatic compounds with high sensitivity in water, Cryst. Growth Des. 15(2015) 2753-2760.
-
[8] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25(2014) 957-961.
-
[9] X.Y. Dong, X.P. Hu, H.C. Yao, et al., Alkaline earth metal (Mg, Sr, Ba)-organic frameworks based on 2,20,6,60-tetracarboxybiphenyl for proton conduction, Inorg. Chem. 53(2014) 12050-12057.
-
[10] D.Y. Shi, C. He, B. Qi, et al., Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation, Chem. Sci. 6(2015) 1035-1042.
-
[11] K. Mo, Y.H. Yang, Y. Cui, A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis, J. Am. Chem. Soc. 136(2014) 1746-1749.
-
[12] D. Liu, Z.G. Ren, H.X. Li, et al., Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective[2+2] photodimerization reactions, Angew. Chem. Int. Ed. 49(2010) 4767-4770.
-
[13] K.H. He, Y.W. Li, Y.Q. Chen, Z. Chang, A new 8-connected self-penetrating metalorganic framework based on dinuclear cadmium clusters as secondary building units, Chin. Chem. Lett. 24(2013) 691-694.
-
[14] F. Wang, H.R. Fu, J. Zhang, Homochiral metal-organic framework with intrinsic chiral topology and helical channels, Cryst. Growth Des. 15(2015) 1568-1571.
-
[15] Y. Han, J.R. Li, Y.B. Xie, G.S. Guo, Substitution reactions in metal-organic frameworks and metal-organic polyhedra, Chem. Soc. Rev. 43(2014) 5952-5981.
-
[16] E. Lee, Y. Kim, J. Heo, K.M. Park, 3D metal-organic framework based on a lower-rim aci δ-functionalized calix[4] arene:crystal-to-crystal transformation upon lattice solvent removal, Cryst. Growth Des. 15(2015) 3556-3560.
-
[17] Q.G. Zhai, C.Z. Lu, X.Y. Wu, S.R. Batten, Coligand modulated six-, eight-, and tenconnected Zn/Cd-1, 2, 4-triazolate frameworks based on mono-, bi-, tri-, penta-, and heptanuclear cluster units, Cryst Growth Des. 7(2007) 2332-2342.
-
[18] T.P. Hu, W.H. Bi, X.Q. Hu, X.L. Zhao, D.F. Sun, Construction of metal-organic frameworks with novel {Zn8O13} SBU or chiral channels through in situ ligand reaction, Cryst. Growth Des. 10(2010) 3324-3326.
-
[19] D.Q. Yuan, D. Zhao, D.F. Sun, H.C. Zhou, An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gasuptake capacity, Angew. Chem. Int. Ed. 49(2010) 5357-5361.
-
[20] D. Zhao, D.Q. Yuan, D.F. Sun, H.C. Zhou, Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows, J. Am. Chem. Soc. 131(2009) 9186-9188.
-
[21] B. Wang, H.L. Huang, X.L. Lv, et al., Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization, Inorg. Chem. 53(2014) 9254-9259.
-
[22] K.K. Wang, H.Q. Huang, W.J. Xue, et al., An ultrastable Zr metal-organic framework with a thiophene-type ligand containing methyl groups, CrystEngComm 17(2015) 3586-3590.
-
[23] Y. Yan, S.H. Yang, A.J. Blake, M. Schrö der, Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage, Acc. Chem. Res. 47(2014) 296-307.
-
[24] Bruker AXS Inc., APEX Software Package, Bruker Molecular Analysis Research Tool Version 2008.4, Bruker AXS Inc., Madison, WI, 2008.
-
[25] G.M. Sheldrick, SADABS Program for Absorption Correction of Area Detector Frames, Bruker AXS, Inc., Madison, WI, 2001.
-
[26] G.M. Sheldrick, SHELXTL-97 Structure Determination Software Suite, Bruker AXS, Inc., Madison, WI, 2008.
-
[27] A.L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36(2003) 7-13.
-
[28] J.X. Yang, X.T. Tao, C.X. Yuan, et al., A facile synthesis and properties of multicarbazole molecules containing multiple vinylene bridges, J. Am. Chem. Soc. 127(2005) 3278-3279.
-
[29] X. Lin, I. Telepeni, A.J. Blake, et al., High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials:the role of pore size, ligand functionalization, and exposed metal sites, J. Am. Chem. Soc. 131(2009) 2159-2171.
-
[30] S.Q. Ma, D.F. Sun, J.M. Simmons, et al., Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake, J. Am. Chem. Soc. 130(2008) 1012-1016.
-
[31] B.L. Chen, N.W. Ockwig, A.R. Millward, D.S. Contreras, O.M. Yaghi, High H2 adsorption in a microporous metal-organic framework with open metal sites, Angew. Chem. Int. Ed. 44(2005) 4745-4749.
-
[32] B. Li, H.M. Wen, H.L. Wang, et al., A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity, J. Am. Chem. Soc. 136(2014) 6207-6210.
-
[33] H.M. Wen, B. Li, D.Q. Yuan, et al., A porous metal-organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane, J. Mater. Chem. A 2(2014) 11516-11522.
-
[34] L.B. Sun, H.Z. Xing, Z.Q. Liang, J.H. Yu, R.R. Xu, A 4+4 strategy for synthesis of zeolitic metal-organic frameworks:an indium-MOF with SOD topology as a lightharvesting antenna, Chem. Commun. 49(2013) 11155-11157.
-
[35] J.M. Gu, S.J. Kim, Y. Kim, S. Huh, Structural isomerism of an anionic nanoporous In-MOF with interpenetrated diamond-like topology, CrystEngComm 14(2012) 1819-1824.
-
计量
- PDF下载量: 0
- 文章访问数: 0
- HTML全文浏览量: 0