A multi-responsive luminescent sensor towards Fe3+ and acetone based on a Cd-containing metal-organic framework

Ting Wang Qing-Hui Liu Ying Gao Xiu-Yun Yang Weiting Yang Song Dang Zhong-Ming Sun

引用本文: Ting Wang,  Qing-Hui Liu,  Ying Gao,  Xiu-Yun Yang,  Weiting Yang,  Song Dang,  Zhong-Ming Sun. A multi-responsive luminescent sensor towards Fe3+ and acetone based on a Cd-containing metal-organic framework[J]. Chinese Chemical Letters, 2016, 27(4): 497-501. shu
Citation:  Ting Wang,  Qing-Hui Liu,  Ying Gao,  Xiu-Yun Yang,  Weiting Yang,  Song Dang,  Zhong-Ming Sun. A multi-responsive luminescent sensor towards Fe3+ and acetone based on a Cd-containing metal-organic framework[J]. Chinese Chemical Letters, 2016, 27(4): 497-501. shu

A multi-responsive luminescent sensor towards Fe3+ and acetone based on a Cd-containing metal-organic framework

  • 基金项目:

    This work was supported by National Natural Science Foundation of China (Nos. 21171162, 21471144), Jilin Province Youth Foundation ([15TD$DIF]No. 20130522132JH), Jilin Province Natural Science Foundation ([15TD$DIF]No. 20150101181JC), Changchun Science and Technology Plan ([15TD$DIF]No. 2013059).

摘要: A Cd-containing metal-organic framework (CdL), formula as {[Cd3(L)2(H2O)6]·1.5DMF}, has been synthesized under solvothermal condition by the reaction of 4, 4', 4"-(methylsilanetriyl)tribenzoic acid (H3L) and Cd2+ ion. Single-crystal X-ray diffraction reveals that CdL displays a three-dimensional framework with 2-fold interpenetration and DMF molecules locate in the void space of the channels. A topological analysis of the framework indicates CdL is a 3, 4-connected pto net. The photoluminescence properties of CdL are systematically studied in detail. Impressively, CdL shows excellent detection performance towards Fe3+ ion and acetone in the sensing experiments, which undoubtedly demonstrates the great potential of CdL as a highly selective multi-responsive luminescent sensor for the detection of organic solvents and metal ions.

English

    1. [1] N.W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, O.M. Yaghi, Reticular chemistry:occurrence and taxonomy of nets and grammar for the design of frameworks, Acc. Chem. Res. 38(2005) 176-182.

    2. [2] J. Lee, O.K. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38(2009) 1450-1459.

    3. [3] W. Zhang, Y.L. Hu, J. Ge, H.L. Jiang, S.H. Yu, A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity, J. Am. Chem. Soc. 136(2014) 16978-16981.

    4. [4] L.Q. Ma, J.M. Falkowski, C. Abney, W.B. Lin, A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis, Nat. Chem. 2(2010) 838-846.

    5. [5] C.A. Bauer, T.V. Timofeeva, T.B. Settersten, et al., Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks, J. Am. Chem. Soc. 129(2007) 7136-7144.

    6. [6] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38(2009) 1477-1504.

    7. [7] P. Horcajada, C. Serre, M. Vallet-Regí, et al., Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem. Int. Ed. 45(2006) 5974-5978.

    8. [8] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 97(1997) 2373-2420.

    9. [9] H.L. Jiang, Y. Tatsu, Z.H. Lu, Q. Xu, Non-, micro-, and mesoporous metal-organic framework isomers:reversible transformation, fluorescence sensing, and large molecule separation, J. Am. Chem. Soc. 132(2010) 5586-5587.

    10. [10] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25(2014) 1407-1410.

    11. [11] Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Luminescent functional metal-organic frameworks, Chem. Rev. 112(2012) 1126-1162.

    12. [12] L.E. Kreno, K. Leong, O.K. Farha, et al., Metal-organic framework materials as chemical sensors, Chem. Rev. 112(2012) 1105-1125.

    13. [13] Z.G. Xie, L.Q. Ma, K.E. deKrafft, A. Jin, W.B. Lin, Porous phosphorescent coordination polymers for oxygen sensing, J. Am. Chem. Soc. 132(2010) 922-923.

    14. [14] B. Zhao, H.L. Gao, X.Y. Chen, et al., A Promising MgII-Ion-selective luminescent probe:structures and properties of Dy-Mn polymers with high symmetry, Chem. Eur. J. 12(2006) 149-158.

    15. [15] F.Y. Yi, W.T. Yang, Z.M. Sun, Highly selective acetone fluorescent sensors based on microporous Cd(II) metal-organic frameworks, J. Mater. Chem. 22(2012) 23201-23209.

    16. [16] T. Wen, D.X. Zhang, J. Liu, R. Lin, J. Zhang, A multifunctional helical Cu(I) coordination polymer with mechanochromic, sensing and photocatalytic properties, Chem. Commun. 49(2013) 5660-5662.

    17. [17] J. Rocha, L.D. Carlos, F.A. Almeida Paz, D. Ananias, Luminescent multifunctional lanthanides-based metal-organic frameworks, Chem. Soc. Rev. 40(2011) 926-940.

    18. [18] Z.C. Hu, B.J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev. 43(2014) 5815-5840.

    19. [19] Q.K. Liu, J.P. Ma, Y.B. Dong, Reversible adsorption and separation of aromatics on CdII-triazole single crystals, Chem. Eur. J. 15(2009) 10364-10368.

    20. [20] B.L. Chen, Y. Yang, F. Zapata, et al., Luminescent open metal sites within a metal-organic framework for sensing small molecules, Adv. Mater. 19(2007) 1693-1696.

    21. [21] Y. Chen, S.Q. Ma, Microporous lanthanide metal-organic frameworks, Rev. Inorg. Chem. 32(2012) 81-100.

    22. [22] S.N. Zhao, L.J. Li, X.Z. Song, et al., Lanthanide ion codoped emitters for tailoring emission trajectory and temperature sensing, Adv. Funct. Mater. 25(2015) 1463-1469.

    23. [23] Y. Zhou, B. Yan, F. Lei, Postsynthetic lanthanide functionalization of nanosized metal-organic frameworks for highly sensitive ratiometric luminescent thermometry, Chem. Commun. 50(2014) 15235-15238.

    24. [24] C. Zhan, S. Ou, C. Zou, M. Zhao, C.D. Wu, A luminescent mixed-lanthanide-organic framework sensor for decoding different volatile organic molecules, Anal. Chem. 86(2014) 6648-6653.

    25. [25] M. Tu, S. Wannapaiboon, K. Khaletskaya, R.A. Fischer, Engineering zeolitic-imidazolate framework (ZIF) thin film devices for selective detection of volatile organic compounds, Adv. Funct. Mater. 25(2015) 4470-4479.

    26. [26] H. Xu, H.C. Hu, C.S. Cao, B. Zhao, Lanthanide organic framework as a regenerable luminescent probe for Fe3+, Inorg. Chem. 54(2015) 4585-4587.

    27. [27] Z. Chen, Y.W. Sun, L.L. Zhang, et al., A tubular europium-organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions, Chem. Commun. 49(2013) 11557-11559.

    28. [28] Y.Q. Lan, H.L. Jiang, S.L. Li, Q. Xu, Solvent-induced controllable synthesis, singlecrystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks, Inorg. Chem. 51(2012) 7484-7491.

    29. [29] D.X. Ma, B.Y. Li, X.J. Zhou, et al., A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature, Chem. Commun. 49(2013) 8964-8966.

    30. [30] Y. Li, S.S. Zhang, D.T. Song, A luminescent metal-organic framework as a turn-on sensor for DMF vapor, Angew. Chem. Int. Ed. 52(2013) 710-713.

    31. [31] M.M. Chen, X. Zhou, H.X. Li, X.X. Yang, J.P. Lang, Luminescent two-dimensional coordination polymer for selective and recyclable sensing of nitroaromatic compounds with high sensitivity in water, Cryst. Growth Des. 15(2015) 2753-2760.

    32. [32] S. Sanda, S. Parshamoni, S. Biswas, S. Konar, Highly selective detection of palladium and picric acid by a luminescent MOF:a dual functional fluorescent sensor, Chem. Commun. 51(2015) 6576-6579.

    33. [33] J.M. Zhou, W. Shi, H.M. Li, H. Li, P. Cheng, Experimental studies and mechanism analysis of high-sensitivity luminescent sensing of pollutional small molecules and ions in Ln4O4 cluster based microporous metal-organic frameworks, J. Phys. Chem. C 118(2014) 416-426.

    34. [34] J.S. Qin, S.J. Bao, P. Li, et al., A stable porous anionic metal-organic framework for luminescence sensing of Ln3+ ions and detection of nitrobenzene, Chem. Asian J. 9(2014) 749-753.

    35. [35] J.X. Ma, X.F. Huang, X.Q. Song, W.S. Liu, Assembly of framework-isomeric 4d-4f heterometallic metal-organic frameworks with neutral/anionic micropores and guest-tuned luminescence properties, Chem. Eur. J. 19(2013) 3590-3595.

    36. [36] V.A. Blatov, TOPOS, A Multipurpose Crystallochemical Analysis with the Program Package, Samara State University, Russia, 2004.

    37. [37] Y.Q. Xiao, Y.J. Cui, Q. Zheng, et al., A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution, Chem. Commun. 46(2010) 5503-5505.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2016-01-14
  • 收稿日期:  2015-09-11
  • 修回日期:  2015-11-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章