Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture

Fei Gao Jian-Bin Zhang Chun-Ping Li Tian-Rui Huo Xiong-Hui Wei

Citation:  Fei Gao, Jian-Bin Zhang, Chun-Ping Li, Tian-Rui Huo, Xiong-Hui Wei. Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture[J]. Chinese Chemical Letters, 2013, 24(3): 249-252. shu

Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture

    通讯作者: Jian-Bin Zhang,
    Xiong-Hui Wei,
摘要: In this work,magnesium tetraphenylporphyrin (MgTPP) was used as a new supramolecular amine-fixing agent. Once introduced, CO2 easily competes with MgTPP for amines, leading to the release of MgTPP. The processes can be explained by the fact that the association constant (Kassoc) values of MgTPP with amines were in the range of 0.6 (ethanolamine) to 3.9 (ethylenediamine), which are lower than the Kassoc values of CO2 with these amines. MgTPP interacted with aniline, ethanolamine, pyrrolidine, or ethylenediamine to form 1:1 adducts. Ethylenediamine presents a stronger Kassoc value for MgTPP, so it was considered an optimal agent for CO2 capture.

English

  • 
    1. [1] A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res. 42 (2009) 983-1994.[1] A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res. 42 (2009) 983-1994.

    2. [2] R. Monastersky, A burden beyond bearing, Nature 458 (2009) 1091-1094.[2] R. Monastersky, A burden beyond bearing, Nature 458 (2009) 1091-1094.

    3. [3] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.[3] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.

    4. [4] H. Choi, Y.C. Park, Y.H. Kim, Y.S. Lee, Ambient carbon dioxide capture by boronrich boron nitride nanotube, J. Am. Chem. Soc. 133 (2011) 2084-2087.[4] H. Choi, Y.C. Park, Y.H. Kim, Y.S. Lee, Ambient carbon dioxide capture by boronrich boron nitride nanotube, J. Am. Chem. Soc. 133 (2011) 2084-2087.

    5. [5] E.R. Monazam, L.J. Shadle, R. Siriwardane, Performance and kinetics of a solid amine sorbent for carbon dioxide removal, Ind. Eng. Chem. Res. 50 (2011) 10989-10995.[5] E.R. Monazam, L.J. Shadle, R. Siriwardane, Performance and kinetics of a solid amine sorbent for carbon dioxide removal, Ind. Eng. Chem. Res. 50 (2011) 10989-10995.

    6. [6] S. Lee, T.P. Filburn, M. Gray, J.W. Park, H.J. Song, Screening test of solid amine sorbents for CO2 capture, Ind. Eng. Chem. Res. 47 (2008) 7419-7423.[6] S. Lee, T.P. Filburn, M. Gray, J.W. Park, H.J. Song, Screening test of solid amine sorbents for CO2 capture, Ind. Eng. Chem. Res. 47 (2008) 7419-7423.

    7. [7] A. Aroonwilas, A. Veawab, P. Tontiwachwuthikul, Behavior of the mass-transfer coefficient of structured packing in CO2 absorbers with chemical reactions, Ind. Eng. Chem. Res. 38 (1999) 2044-2050.[7] A. Aroonwilas, A. Veawab, P. Tontiwachwuthikul, Behavior of the mass-transfer coefficient of structured packing in CO2 absorbers with chemical reactions, Ind. Eng. Chem. Res. 38 (1999) 2044-2050.

    8. [8] C. Lastoskie, Caging carbon dioxide, Science 330 (2010) 595-596.[8] C. Lastoskie, Caging carbon dioxide, Science 330 (2010) 595-596.

    9. [9] J. Kemper, G. Ewert, M. Grünewald, Absorption and regeneration performance of novel reactive amine solvents for post-combustion CO2 capture, Energy Procedia 4 (2011) 232-239.[9] J. Kemper, G. Ewert, M. Grünewald, Absorption and regeneration performance of novel reactive amine solvents for post-combustion CO2 capture, Energy Procedia 4 (2011) 232-239.

    10. [10] J.F. Zhang, O. Nwani, Y. Tan, D.W. Agar, Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction, Chem. Eng. Res. Des. 89 (2011) 1190-1196.[10] J.F. Zhang, O. Nwani, Y. Tan, D.W. Agar, Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction, Chem. Eng. Res. Des. 89 (2011) 1190-1196.

    11. [11] K. Veltman, B. Singh, E.G. Hertwich, Human and environmental impact assessment of postcombustion CO2 capture focusing on emissions from amine-based scrubbing solvents to air, Environ. Sci. Technol. 44 (2010) 1496-1502.[11] K. Veltman, B. Singh, E.G. Hertwich, Human and environmental impact assessment of postcombustion CO2 capture focusing on emissions from amine-based scrubbing solvents to air, Environ. Sci. Technol. 44 (2010) 1496-1502.

    12. [12] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652-1654.[12] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652-1654.

    13. [13] X.L. Ma, X.X. Wang, C.S. Song, Molecular basket sorbents for separation of CO2 and H2S from various gas streams, J. Am. Chem. Soc. 131 (2009) 5777-5783.[13] X.L. Ma, X.X. Wang, C.S. Song, Molecular basket sorbents for separation of CO2 and H2S from various gas streams, J. Am. Chem. Soc. 131 (2009) 5777-5783.

    14. [14] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (2008) 14690-14704.[14] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (2008) 14690-14704.

    15. [15] J. Stewart, R.A. Lanning, Reduce amine plant solvent losses, Hydrocarb. Process. 73 (1994) 67-81.[15] J. Stewart, R.A. Lanning, Reduce amine plant solvent losses, Hydrocarb. Process. 73 (1994) 67-81.

    16. [16] W.Q. Zheng, N. Shan, L.X. Yu, X.Q. Wang, UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins, Dyes Pigments 77 (2008) 153-157.[16] W.Q. Zheng, N. Shan, L.X. Yu, X.Q. Wang, UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins, Dyes Pigments 77 (2008) 153-157.

    17. [17] J.P. Collman, Y.L. Yan, T. Eberspacher, X.J. Xie, Oxygen binding of water-soluble cobalt porphyrins in aqueous solution, Inorg. Chem. 44 (2005) 9628-9630.[17] J.P. Collman, Y.L. Yan, T. Eberspacher, X.J. Xie, Oxygen binding of water-soluble cobalt porphyrins in aqueous solution, Inorg. Chem. 44 (2005) 9628-9630.

    18. [18] K. Wynne, S.M. Lecours, C. Calli, M.J. Therien, R.M. Hochstrasser, Porphyrinquinone electron transfer revisited. The role of excited-state eegeneracy in ultrafast charge transfer reactions, J. Am. Chem. Soc. 117 (1995) 3749-3753.[18] K. Wynne, S.M. Lecours, C. Calli, M.J. Therien, R.M. Hochstrasser, Porphyrinquinone electron transfer revisited. The role of excited-state eegeneracy in ultrafast charge transfer reactions, J. Am. Chem. Soc. 117 (1995) 3749-3753.

    19. [19] A. Satake, Y. Kobuke, Dynamic supramolecular porphyrin systems, Tetrahedron 61 (2005) 13-41.[19] A. Satake, Y. Kobuke, Dynamic supramolecular porphyrin systems, Tetrahedron 61 (2005) 13-41.

    20. [20] J.G. Xu, Z.B. Wang, Fluorometry, 3rd ed., Science Press, Beijing, 2006.[20] J.G. Xu, Z.B. Wang, Fluorometry, 3rd ed., Science Press, Beijing, 2006.

    21. [21] S. Iotti, A. Sabatini, A. Vacca, Chemical and biochemical thermodynamics: from ATP hydrolysis to a general reassessment, J. Phys. Chem. A 114 (2010) 1985-1993.[21] S. Iotti, A. Sabatini, A. Vacca, Chemical and biochemical thermodynamics: from ATP hydrolysis to a general reassessment, J. Phys. Chem. A 114 (2010) 1985-1993.

    22. [22] C.J. Liu, W.C. Lu, Optical amine sensor based on metallophthalocyanine, J. Chin. Inst. Chem. Eng. 38 (2007) 483-488.[22] C.J. Liu, W.C. Lu, Optical amine sensor based on metallophthalocyanine, J. Chin. Inst. Chem. Eng. 38 (2007) 483-488.

    23. [23] A.V. Leontiev, D.M. Rudkevich, Revisiting noncovalent SO2-amine chemistry: an indicator-displacement assay for colorimetric detection of SO2, J. Am. Chem. Soc. 127 (2005) 14126-14127.[23] A.V. Leontiev, D.M. Rudkevich, Revisiting noncovalent SO2-amine chemistry: an indicator-displacement assay for colorimetric detection of SO2, J. Am. Chem. Soc. 127 (2005) 14126-14127.

    24. [24] M. Al-Juaied, G.T. Rochelle, Thermodynamics and equilibrium solubility of carbon dioxide in diglycolamine/morpholine/water, J. Chem. Eng. Data 51 (2006) 708-717.[24] M. Al-Juaied, G.T. Rochelle, Thermodynamics and equilibrium solubility of carbon dioxide in diglycolamine/morpholine/water, J. Chem. Eng. Data 51 (2006) 708-717.

    25. [25] R.H.Weiland, T.Chakravarty, A.E.Mather, Solubility of carbondioxideandhydrogen sulfide in aqueous alkanolamines, Ind. Eng. Chem. Res. 32 (1993) 1419-1430.[25] R.H.Weiland, T.Chakravarty, A.E.Mather, Solubility of carbondioxideandhydrogen sulfide in aqueous alkanolamines, Ind. Eng. Chem. Res. 32 (1993) 1419-1430.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2013-01-15
  • 收稿日期:  2012-11-08
  • 网络出版日期:  2013-01-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章