Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration

Shan-Shan Li Hai-Long Wu Ya-Juan Liu Hui-Wen Gu Ru-Qin Yu

Citation:  Shan-Shan Li, Hai-Long Wu, Ya-Juan Liu, Hui-Wen Gu, Ru-Qin Yu. Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration[J]. Chinese Chemical Letters, 2013, 24(3): 239-242. shu

Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration

    通讯作者: Hai-Long Wu,
摘要: A "green" and quick analytical method for complex compounds was developed for simultaneous determination of tyrosine (Tyr) and dopamine (DA) in urine samples in this paper. The three-way responsive data recorded by excitation-emission matrix fluorescence (EEM) spectrometer was analyzed using second-order calibration methods based on both parallel factor analysis (PARAFAC) and selfweighted alternating trilinear decomposition (SWATLD) algorithms. The EEM spectra of the analytes were overlapped with the background in urine samples. However the second-order advantage of both PARAFAC and SWATLD methods was exploited, even in the presence of unknown interferences and the satisfactory results can be obtained. Furthermore, the linear ranges of Tyr and DA were determined to be 0.042-6.42 μg/mL and 0.18-4.43 μmg/mL, respectively, and the accuracies of both methods were validated by the analytical figures of merit (FOM).

English

  • 
    1. [1] K.S. Booksh, B.R. Kowalski, Theory of analytical chemistry, Anal. Chem. 66 (1994) 782-791.[1] K.S. Booksh, B.R. Kowalski, Theory of analytical chemistry, Anal. Chem. 66 (1994) 782-791.

    2. [2] H.L.Wu, M. Shibukawa, K. Oguma, Analternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons, J. Chemom. 12 (1998) 1-26.[2] H.L.Wu, M. Shibukawa, K. Oguma, Analternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons, J. Chemom. 12 (1998) 1-26.

    3. [3] H.L. Wu, J.F. Nie, Y.J. Yu, et al., Multi-way chemometric methodologies and applications: a central summary of our research work, Anal. Chim. Acta 650 (2009) 131-142.[3] H.L. Wu, J.F. Nie, Y.J. Yu, et al., Multi-way chemometric methodologies and applications: a central summary of our research work, Anal. Chim. Acta 650 (2009) 131-142.

    4. [4] H.Y. Fu, H.L. Wu, J.F. Nie, et al., Highly sensitive fluorescence quantification of irinotecan in biological fluids with the aid of second-order advantage, Chin. Chem. Lett. 21 (2010) 1482-1486.[4] H.Y. Fu, H.L. Wu, J.F. Nie, et al., Highly sensitive fluorescence quantification of irinotecan in biological fluids with the aid of second-order advantage, Chin. Chem. Lett. 21 (2010) 1482-1486.

    5. [5] L.Q. Ouyang, H.L. Wu, Y.J. Liu, et al., Simultaneous determination of metronidazole and tinidazole in plasma by using HPLC-DAD coupled with second-order calibration, Chin. Chem. Lett. 21 (2010) 1223-1226.[5] L.Q. Ouyang, H.L. Wu, Y.J. Liu, et al., Simultaneous determination of metronidazole and tinidazole in plasma by using HPLC-DAD coupled with second-order calibration, Chin. Chem. Lett. 21 (2010) 1223-1226.

    6. [6] D.E. Matthews, An overview of phenylalanine and tyrosine kinetics in humans, J. Nutr. 137 (2007) 1549S-1555S.[6] D.E. Matthews, An overview of phenylalanine and tyrosine kinetics in humans, J. Nutr. 137 (2007) 1549S-1555S.

    7. [7] P. Revest, A. Longstaff, Molecular Neuroscience, Garland Science, New York, 1998.[7] P. Revest, A. Longstaff, Molecular Neuroscience, Garland Science, New York, 1998.

    8. [8] J.C. Garbutt, D.P. van Kammen, R.A. Levine, et al., Cerebrospinal fluid hydroxylase cofactor in schizophrenia, Psychol. Res. 6 (1982) 145-151.[8] J.C. Garbutt, D.P. van Kammen, R.A. Levine, et al., Cerebrospinal fluid hydroxylase cofactor in schizophrenia, Psychol. Res. 6 (1982) 145-151.

    9. [9] J.F. Leckman, W.K. Goodman, G.M. Anderson, et al., Cerebrospinal fluid biogenic amines in obsessive compulsive disorder, Tourette's syndrome, and healthy controls, Neuropsychopharmacology 12 (1995) 73-86.[9] J.F. Leckman, W.K. Goodman, G.M. Anderson, et al., Cerebrospinal fluid biogenic amines in obsessive compulsive disorder, Tourette's syndrome, and healthy controls, Neuropsychopharmacology 12 (1995) 73-86.

    10. [10] R.F. Thompson, The Brain: A Neuroscience Primer, Worth Pub, New York, 2000.[10] R.F. Thompson, The Brain: A Neuroscience Primer, Worth Pub, New York, 2000.

    11. [11] G.R. Xu, M.L. Xu, J.M. Zhang, et al., Electropolymerization of negatively charged Ni (Ⅱ) complex for the selective determination of dopamine in the presence of ascorbic acid, Bioelectrochemistry 72 (2008) 87-93.[11] G.R. Xu, M.L. Xu, J.M. Zhang, et al., Electropolymerization of negatively charged Ni (Ⅱ) complex for the selective determination of dopamine in the presence of ascorbic acid, Bioelectrochemistry 72 (2008) 87-93.

    12. [12] A.S. Adekunle, B.O. Agboola, J. Pillay, et al., Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (Ⅲ) oxide nanoparticles platform, Sens. Actuators B 148 (2010) 93-102.[12] A.S. Adekunle, B.O. Agboola, J. Pillay, et al., Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (Ⅲ) oxide nanoparticles platform, Sens. Actuators B 148 (2010) 93-102.

    13. [13] R. Bro, PARAFAC: tutorial and applications, Chemom. Intell. Lab. Syst. 38 (1997) 149-171.[13] R. Bro, PARAFAC: tutorial and applications, Chemom. Intell. Lab. Syst. 38 (1997) 149-171.

    14. [14] Z.P. Chen, H.L. Wu, J.H. Jiang, et al., A novel trilinear decomposition algorithm for second-order linear calibration, Chemom. Intell. Lab. Syst. 52 (2000) 75-86.[14] Z.P. Chen, H.L. Wu, J.H. Jiang, et al., A novel trilinear decomposition algorithm for second-order linear calibration, Chemom. Intell. Lab. Syst. 52 (2000) 75-86.

    15. [15] R. Bro, H.A.L. Kiers, A new efficient method for determining the number of components in PARAFAC models, J. Chemom. 17 (2003) 274-286.[15] R. Bro, H.A.L. Kiers, A new efficient method for determining the number of components in PARAFAC models, J. Chemom. 17 (2003) 274-286.

    16. [16] A.C. Olivieri, Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory, Anal. Chem. 77 (2005) 4936-4946.[16] A.C. Olivieri, Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory, Anal. Chem. 77 (2005) 4936-4946.

    17. [17] A.C. Olivieri, N.K.M. Faber, A closed form expression for computing the sensitivity in second order bilinear calibration, J. Chemom. 19 (2005) 583-592.[17] A.C. Olivieri, N.K.M. Faber, A closed form expression for computing the sensitivity in second order bilinear calibration, J. Chemom. 19 (2005) 583-592.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2012-11-13
  • 网络出版日期:  2013-01-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章