Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in water

Amin Rostami Bahman Tahmasbi Hoshyar Gholami Hajir Taymorian

Citation:  Amin Rostami, Bahman Tahmasbi, Hoshyar Gholami, Hajir Taymorian. Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in water[J]. Chinese Chemical Letters, 2013, 24(3): 211-214. shu

Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in water

    通讯作者: Amin Rostami,
摘要: An efficient and eco-friendly method is reported for the synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones from direct cyclocondensation of anthranilamide with aldehydes and ketones using N-propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) as a recoverable and recyclable nanocatalyst in good to excellent yields in water at 70℃. The catalyst was readily separated using an external magnet and reusable without significant loss of their catalytic efficiency.

English

  • 
    1. [1] C.O. Dalaigh, S.A. Corr, Y.G. Ko, S.J. Connon, Amagnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Angew. Chem. Int. Ed. 46 (2007) 4329-4332.[1] C.O. Dalaigh, S.A. Corr, Y.G. Ko, S.J. Connon, Amagnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Angew. Chem. Int. Ed. 46 (2007) 4329-4332.

    2. [2] D. Guin, B. Baruwati, S.V. Manorama, Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Org. Lett. 9 (2007) 1419-1421.[2] D. Guin, B. Baruwati, S.V. Manorama, Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Org. Lett. 9 (2007) 1419-1421.

    3. [3] S. Laurent, D. Forge, M. Port, et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.[3] S. Laurent, D. Forge, M. Port, et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.

    4. [4] C.T. Yavuz, J.T. Mayo, W.W. Yu, et al., Low-field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314 (2006) 964-967.[4] C.T. Yavuz, J.T. Mayo, W.W. Yu, et al., Low-field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314 (2006) 964-967.

    5. [5] K.T.S. Alexander, L.G. Robin, Simple preparation and application of TEMPO-coated Fe3O4 superparamagnetic nanoparticles for selective oxidation of alcohols, Chem. Eur. J. 16 (2010) 12718-12726.[5] K.T.S. Alexander, L.G. Robin, Simple preparation and application of TEMPO-coated Fe3O4 superparamagnetic nanoparticles for selective oxidation of alcohols, Chem. Eur. J. 16 (2010) 12718-12726.

    6. [6] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.[6] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.

    7. [7] V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075.[7] V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075.

    8. [8] B. Karimi, E. Farhangi, Highly recyclable magnetic core-shell nanoparticle-supported TEMPO catalyst for efficient metal-and halogen-free aerobic oxidation of alcohols in water, Chem. Eur. J. 17 (2011) 6056-6060.[8] B. Karimi, E. Farhangi, Highly recyclable magnetic core-shell nanoparticle-supported TEMPO catalyst for efficient metal-and halogen-free aerobic oxidation of alcohols in water, Chem. Eur. J. 17 (2011) 6056-6060.

    9. [9] Y.H. Liu, J. Deng, J.W. Gao, Z.H. Zhange, Triflic acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gemdihydroperoxides, Adv. Synth. Catal. 354 (2012) 441-447.[9] Y.H. Liu, J. Deng, J.W. Gao, Z.H. Zhange, Triflic acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gemdihydroperoxides, Adv. Synth. Catal. 354 (2012) 441-447.

    10. [10] H. Yang, G. Li, Z. Ma, Magnetic core-shell-structured nanoporous organosilica microspheres for the Suzuki-Miyaura coupling of aryl chlorides: improved catalytic activity and facile catalyst recovery, J. Mater. Chem. 22 (2012) 6639-6648.[10] H. Yang, G. Li, Z. Ma, Magnetic core-shell-structured nanoporous organosilica microspheres for the Suzuki-Miyaura coupling of aryl chlorides: improved catalytic activity and facile catalyst recovery, J. Mater. Chem. 22 (2012) 6639-6648.

    11. [11] H. Yang, Y. Wang, Y. Qin, et al., One-pot preparation of magnetic N-heterocyclic carbene-functionalized silica nanoparticles for the Suzuki-Miyaura coupling of aryl chlorides: improved activity and facile catalyst recovery, Green Chem. 13 (2011) 1352-1361.[11] H. Yang, Y. Wang, Y. Qin, et al., One-pot preparation of magnetic N-heterocyclic carbene-functionalized silica nanoparticles for the Suzuki-Miyaura coupling of aryl chlorides: improved activity and facile catalyst recovery, Green Chem. 13 (2011) 1352-1361.

    12. [12] Y. Xia, Z.N. Yang, M. Hour, et al., Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones, Bioorg. Med. Chem. Lett. 11 (2001) 1193-1196.[12] Y. Xia, Z.N. Yang, M. Hour, et al., Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones, Bioorg. Med. Chem. Lett. 11 (2001) 1193-1196.

    13. [13] R.J. Abdel-Jalil, W. Volter, M.A. Saeed, Novel method for the synthesis of 4(3H)-quinazolinones, Tetrahedron Lett. 45 (2004) 3475-3476.[13] R.J. Abdel-Jalil, W. Volter, M.A. Saeed, Novel method for the synthesis of 4(3H)-quinazolinones, Tetrahedron Lett. 45 (2004) 3475-3476.

    14. [14] J.F. Liu, J. Lee, A.M. Dalton, et al., Microwave-assisted one-pot synthesis of 2,3-disubstituted 3H-quinazolin-4-ones, Tetrahedron Lett. 46 (2005) 1241-1244.[14] J.F. Liu, J. Lee, A.M. Dalton, et al., Microwave-assisted one-pot synthesis of 2,3-disubstituted 3H-quinazolin-4-ones, Tetrahedron Lett. 46 (2005) 1241-1244.

    15. [15] D.J. Connolly, D. Cusack, T.P. O'Sullivan, P.J. Guiry, Synthesis of quinazolinones and quinazolines, Tetrahedron 61 (2005) 10153-10202, and references therein.[15] D.J. Connolly, D. Cusack, T.P. O'Sullivan, P.J. Guiry, Synthesis of quinazolinones and quinazolines, Tetrahedron 61 (2005) 10153-10202, and references therein.

    16. [16] M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4-(1H)-one derivatives, Synthesis (2006) 344-3448.[16] M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4-(1H)-one derivatives, Synthesis (2006) 344-3448.

    17. [17] J.X. Chen, D.Z. Wu, F. He, et al., Gallium(Ⅲ) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones, Tetrahedron Lett. 49 (2008) 3814-3818.[17] J.X. Chen, D.Z. Wu, F. He, et al., Gallium(Ⅲ) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones, Tetrahedron Lett. 49 (2008) 3814-3818.

    18. [18] M. Dabiri, P. Salehi, S. Otokesh, G. Kozehgary, A.A. Mohammadi, Efficient synthesis ofmono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2·12H2O as a reusable catalyst in water and ethanol, Tetrahedron Lett. 46 (2005) 6123-6126.[18] M. Dabiri, P. Salehi, S. Otokesh, G. Kozehgary, A.A. Mohammadi, Efficient synthesis ofmono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2·12H2O as a reusable catalyst in water and ethanol, Tetrahedron Lett. 46 (2005) 6123-6126.

    19. [19] A. Davoodnia, S. Allameh, A.R. Fakhari, N. Tavakoli-Hoseini, Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst, Chin. Chem. Lett. 21 (2010) 550-553.[19] A. Davoodnia, S. Allameh, A.R. Fakhari, N. Tavakoli-Hoseini, Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst, Chin. Chem. Lett. 21 (2010) 550-553.

    20. [20] A. Rostami, A. Tavakoli, Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol, Chin. Chem. Lett. 22 (2011) 1317-1320.[20] A. Rostami, A. Tavakoli, Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol, Chin. Chem. Lett. 22 (2011) 1317-1320.

    21. [21] R.Z. Qiao, B.L. Xu, Y.H. Wang, A facile synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in 2,2,2-trifluoroethanol, Chin. Chem. Lett. 18 (2007) 656-658.[21] R.Z. Qiao, B.L. Xu, Y.H. Wang, A facile synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in 2,2,2-trifluoroethanol, Chin. Chem. Lett. 18 (2007) 656-658.

    22. [22] H.R. Shaterian, A.R. Oveisi, PPA-SiO2 as a heterogeneous catalyst for efficient synthesis of 2-substituted-1,2,3,4-tetrahydro-4-quinazolinones under solventfree conditions, Chin. J. Chem. 27 (2009) 2418-2422.[22] H.R. Shaterian, A.R. Oveisi, PPA-SiO2 as a heterogeneous catalyst for efficient synthesis of 2-substituted-1,2,3,4-tetrahydro-4-quinazolinones under solventfree conditions, Chin. J. Chem. 27 (2009) 2418-2422.

    23. [23] M. Wang, T.T. Zhang, Y. Liang, J.J. Gao, Strontium chloride-catalyzed one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in protic media, Chin. Chem. Lett. 22 (2011) 1423-1426.[23] M. Wang, T.T. Zhang, Y. Liang, J.J. Gao, Strontium chloride-catalyzed one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in protic media, Chin. Chem. Lett. 22 (2011) 1423-1426.

    24. [24] M.M. Heravi, B. Baghernejad, H.A. Oskooie, Application of sulfamic acid in organic synthesis, Curr. Org. Chem. 13 (2009) 1002-1014.[24] M.M. Heravi, B. Baghernejad, H.A. Oskooie, Application of sulfamic acid in organic synthesis, Curr. Org. Chem. 13 (2009) 1002-1014.

    25. [25] A. Santra, G. Guchhait, A.K. Misra, Efficient acylation and sulfation of carbohydrates using sulfamic acid, a mild, eco-friendly catalyst under organic solventfree conditions, Green Chem. 13 (2011) 1345-1351.[25] A. Santra, G. Guchhait, A.K. Misra, Efficient acylation and sulfation of carbohydrates using sulfamic acid, a mild, eco-friendly catalyst under organic solventfree conditions, Green Chem. 13 (2011) 1345-1351.

    26. [26] N. Shapiro, A. Vigalok, Highly efficient organic reactions "on water", "in water", and both, Angew. Chem. Int. Ed. 120 (2008) 2891-2894.[26] N. Shapiro, A. Vigalok, Highly efficient organic reactions "on water", "in water", and both, Angew. Chem. Int. Ed. 120 (2008) 2891-2894.

    27. [27] A. Rostami, J. Akradi, A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solventfree conditions, Tetrahedron Lett. 51 (2010) 3501-3503.[27] A. Rostami, J. Akradi, A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solventfree conditions, Tetrahedron Lett. 51 (2010) 3501-3503.

    28. [28] A. Rostami, F. Ahamad-Jangi, Sulfamic acid: an efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free, Chin. Chem. Lett. 22 (2011) 1029-1032.[28] A. Rostami, F. Ahamad-Jangi, Sulfamic acid: an efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free, Chin. Chem. Lett. 22 (2011) 1029-1032.

    29. [29] A. Khazaei, A. Rostami, F. Mantashlo, π-Toluenesulfonyl chloride as a new and effective catalyst for acetylation and formylation of hydroxyl compounds under mild conditions, Chin. Chem. Lett. 21 (2010) 14-30.[29] A. Khazaei, A. Rostami, F. Mantashlo, π-Toluenesulfonyl chloride as a new and effective catalyst for acetylation and formylation of hydroxyl compounds under mild conditions, Chin. Chem. Lett. 21 (2010) 14-30.

    30. [30] A. Rostami, A. Khazaei, H.A. Alavi-Nik, Z. Toodeh-Roosta, Formylation of alcohol with Formic acid under solvent-free and neutral conditions catalyzed by free I2 or I2 generated, in situ from Fe(NO3)3·9H2O/NaI, Chin. J. Catal. 32 (2011) 60-64.[30] A. Rostami, A. Khazaei, H.A. Alavi-Nik, Z. Toodeh-Roosta, Formylation of alcohol with Formic acid under solvent-free and neutral conditions catalyzed by free I2 or I2 generated, in situ from Fe(NO3)3·9H2O/NaI, Chin. J. Catal. 32 (2011) 60-64.

    31. [31] M.Z. Kassaee, H. Masrouri, F. Movahedi, Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water, Appl. Catal. A: Gen. 395 (2011) 28-30.[31] M.Z. Kassaee, H. Masrouri, F. Movahedi, Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water, Appl. Catal. A: Gen. 395 (2011) 28-30.

    32. [32] X. Liu, Z. Ma, J. Xing, H.J. Liu, Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres, Magn. Magn. Mater. 270 (2004) 1-6.[32] X. Liu, Z. Ma, J. Xing, H.J. Liu, Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres, Magn. Magn. Mater. 270 (2004) 1-6.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2012-09-07
  • 网络出版日期:  2012-12-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章