Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst

Abolfazl Ziarati Javad Safaei-Ghomi Sahar Rohani

Citation:  Abolfazl Ziarati, Javad Safaei-Ghomi, Sahar Rohani. Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst[J]. Chinese Chemical Letters, 2013, 24(3): 195-198. shu

Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst

    通讯作者: Javad Safaei-Ghomi,
摘要: An efficient and multicomponent method has been developed for the synthesis of functionalized tricarboxamides at room temperature using CuI nanoparticles as catalyst. This method involved fivecomponent coupling reactions of Meldrum's acid, isocyanides with aromatic aldehydes and amines at room temperature. Atom economy, wide range of products, excellent yields in short time and mild reaction conditions are some of the important features of this protocol. Notably, this catalyst could be recycled and reused for several times without significantly decreasing the catalytic activity.

English

  • 
    1. [1] A. Basso, L. Banfi, R. Riva, G. Guanti, A novel highly selective chiral auxiliary for the asymmetric synthesis of L-and D-a-amino acid derivatives via a multicomponent Ugi ueaction, J. Org. Chem. 70 (2005) 575-579.[1] A. Basso, L. Banfi, R. Riva, G. Guanti, A novel highly selective chiral auxiliary for the asymmetric synthesis of L-and D-a-amino acid derivatives via a multicomponent Ugi ueaction, J. Org. Chem. 70 (2005) 575-579.

    2. [2] D.J. Ramón, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.[2] D.J. Ramón, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.

    3. [3] V. Nair, C. Rajesh, A.U. Vinod, et al., Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes, Acc. Chem. Res. 36 (2003) 899-907.[3] V. Nair, C. Rajesh, A.U. Vinod, et al., Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes, Acc. Chem. Res. 36 (2003) 899-907.

    4. [4] W.G. Yi, Z.Y. Jia, N.B. Li, et al., Zirconocene bis(perfluorooctanesulfonate)s-catalyzed the reaction of indoles and carbonyl compounds, Chin. J. Org. Chem. 32 (2012) 2390-2393.[4] W.G. Yi, Z.Y. Jia, N.B. Li, et al., Zirconocene bis(perfluorooctanesulfonate)s-catalyzed the reaction of indoles and carbonyl compounds, Chin. J. Org. Chem. 32 (2012) 2390-2393.

    5. [5] C. Ma, Y. Yang, Thiazolium-mediated multicomponent reactions: a facile synthesis of 3-aminofuran derivatives, Org. Lett. 7 (2005) 1343-1345.[5] C. Ma, Y. Yang, Thiazolium-mediated multicomponent reactions: a facile synthesis of 3-aminofuran derivatives, Org. Lett. 7 (2005) 1343-1345.

    6. [6] Y. Cheng, O. Meth-Cohn, Heterocycles derived from heteroatom-substituted carbenes, Chem. Rev. 104 (2004) 2507-2530.[6] Y. Cheng, O. Meth-Cohn, Heterocycles derived from heteroatom-substituted carbenes, Chem. Rev. 104 (2004) 2507-2530.

    7. [7] H. Anaraki-Ardakani, M. Noei, A. Tabarzad, Facile synthesis of N-(arylsulfonyl)-4-ethoxy-5-oxo-2,5-dihydro-1H-pyrolle-2,3-dicarboxylates by one-pot three-component reaction, Chin. Chem. Lett. 23 (2012) 45-48.[7] H. Anaraki-Ardakani, M. Noei, A. Tabarzad, Facile synthesis of N-(arylsulfonyl)-4-ethoxy-5-oxo-2,5-dihydro-1H-pyrolle-2,3-dicarboxylates by one-pot three-component reaction, Chin. Chem. Lett. 23 (2012) 45-48.

    8. [8] A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89.[8] A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89.

    9. [9] A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3169-3210.[9] A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3169-3210.

    10. [10] A. Shaabani, A. Maleki, A.H. Rezayan, A. Sarvary, Recent progress of isocyanidebased multicomponent reactions in Iran, Mol. Divers. 15 (2011) 41-68.[10] A. Shaabani, A. Maleki, A.H. Rezayan, A. Sarvary, Recent progress of isocyanidebased multicomponent reactions in Iran, Mol. Divers. 15 (2011) 41-68.

    11. [11] S. Sadjadi, M.M. Heravi, Recent application of isocyanides in synthesis of heterocycles, Tetrahedron 67 (2011) 2707-2752.[11] S. Sadjadi, M.M. Heravi, Recent application of isocyanides in synthesis of heterocycles, Tetrahedron 67 (2011) 2707-2752.

    12. [12] A.V. Ivachtchenko, Y.A. Ivanenkov, V.M. Kysil, et al., Multicomponent reactions of isocyanides in the synthesis of heterocycles, Russ. Chem. Rev. (Engl. Transl.) 79 (2010) 787-817.[12] A.V. Ivachtchenko, Y.A. Ivanenkov, V.M. Kysil, et al., Multicomponent reactions of isocyanides in the synthesis of heterocycles, Russ. Chem. Rev. (Engl. Transl.) 79 (2010) 787-817.

    13. [13] J.L. Wang, D. Liu, Z.J. Zheng, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 7124-7129.[13] J.L. Wang, D. Liu, Z.J. Zheng, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 7124-7129.

    14. [14] K. Strom, J. Sjogren, A. Broberg, J. Schnurer, Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phetrans-4-OH-L-Pro) and 3-phenyllactic acid, Appl. Environ. Microbiol. 68 (2002) 4322-4327.[14] K. Strom, J. Sjogren, A. Broberg, J. Schnurer, Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phetrans-4-OH-L-Pro) and 3-phenyllactic acid, Appl. Environ. Microbiol. 68 (2002) 4322-4327.

    15. [15] X. Tang, L. Fan, H. Yu, Y. Liao, D. Yang, Facile synthesis of dipeptidomimetics of paminobenzoic acid and their antidiabetic activity, Chin. J. Org. Chem. 29 (2009) 595-600.[15] X. Tang, L. Fan, H. Yu, Y. Liao, D. Yang, Facile synthesis of dipeptidomimetics of paminobenzoic acid and their antidiabetic activity, Chin. J. Org. Chem. 29 (2009) 595-600.

    16. [16] A.I. Faden, V.A. Movsesyan, S.M. Knoblach, F. Ahmed, I. Cernak, Neuroprotective effects of novel small peptides in vitro and after brain injury, Neuropharmacology 49 (2005) 410-424.[16] A.I. Faden, V.A. Movsesyan, S.M. Knoblach, F. Ahmed, I. Cernak, Neuroprotective effects of novel small peptides in vitro and after brain injury, Neuropharmacology 49 (2005) 410-424.

    17. [17] C.B. Cui, H. Kakeya, H. Osada, Novel mammalian cell cycle inhibitors, cyclotroprostatins A-D, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase, Tetrahedron 53 (1997) 59-72.[17] C.B. Cui, H. Kakeya, H. Osada, Novel mammalian cell cycle inhibitors, cyclotroprostatins A-D, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase, Tetrahedron 53 (1997) 59-72.

    18. [18] M.B. Teimouri, P. Akbari-Moghaddam, G. Golbaghi, Pseudo-five-component reaction between 3-formylchromones, Meldrum's acid, isocyanides and primary arylamines: diversity-oriented synthesis of novel chromone-containing peptidomimetics, ACS Comb. Sci. 13 (2011) 659-666.[18] M.B. Teimouri, P. Akbari-Moghaddam, G. Golbaghi, Pseudo-five-component reaction between 3-formylchromones, Meldrum's acid, isocyanides and primary arylamines: diversity-oriented synthesis of novel chromone-containing peptidomimetics, ACS Comb. Sci. 13 (2011) 659-666.

    19. [19] A. Shaabani, M.B. Teimouri, A. Bazgir, H.R. Bijanzadeh, Introducing a novel class of four-component reactions, Mol. Divers. 6 (2003) 199-206.[19] A. Shaabani, M.B. Teimouri, A. Bazgir, H.R. Bijanzadeh, Introducing a novel class of four-component reactions, Mol. Divers. 6 (2003) 199-206.

    20. [20] M.B. Teimouri, P. Akbari-Moghaddam, An efficient one-pot method for the synthesis of novel ferroceneetriamide conjugates via pseudo five-component reaction, Tetrahedron 67 (2011) 5928-5934.[20] M.B. Teimouri, P. Akbari-Moghaddam, An efficient one-pot method for the synthesis of novel ferroceneetriamide conjugates via pseudo five-component reaction, Tetrahedron 67 (2011) 5928-5934.

    21. [21] A. Shaabani, M. Seyyedhamzeh, A. Maleki, M. Behnam, F. Rezazadeh, Synthesis of fully substituted pyrazolo[3,4-b]pyridine-5-carboxamide derivatives via a onepot four-component reaction, Tetrahedron Lett. 50 (2009) 2911-2913.[21] A. Shaabani, M. Seyyedhamzeh, A. Maleki, M. Behnam, F. Rezazadeh, Synthesis of fully substituted pyrazolo[3,4-b]pyridine-5-carboxamide derivatives via a onepot four-component reaction, Tetrahedron Lett. 50 (2009) 2911-2913.

    22. [22] F. Cagide, J. Reis, A. Gaspar, F. Borges, Accelerating lead optimization of chromone carboxamide scaffold throughout microwave-assisted organic synthesis, Tetrahedron Lett. 52 (2011) 6446-6449.[22] F. Cagide, J. Reis, A. Gaspar, F. Borges, Accelerating lead optimization of chromone carboxamide scaffold throughout microwave-assisted organic synthesis, Tetrahedron Lett. 52 (2011) 6446-6449.

    23. [23] N. Koukabi, E. Kolvari, A. Khazaei, et al., Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Chem. Commun. 47 (2011) 9230-9232.[23] N. Koukabi, E. Kolvari, A. Khazaei, et al., Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Chem. Commun. 47 (2011) 9230-9232.

    24. [24] S. Shylesh, V. Schunemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.[24] S. Shylesh, V. Schunemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

    25. [25] M.Z. Kassaee, R. Mohammadi, H. Masrouri, et al., Nano TiO2 as a heterogeneous catalyst in an efficient one-pot three-component Mannich synthesis of β-aminocarbonyls, Chin. Chem. Lett. 22 (2011) 1203-1206.[25] M.Z. Kassaee, R. Mohammadi, H. Masrouri, et al., Nano TiO2 as a heterogeneous catalyst in an efficient one-pot three-component Mannich synthesis of β-aminocarbonyls, Chin. Chem. Lett. 22 (2011) 1203-1206.

    26. [26] A. Teimouri, A. Najafi Chermahini, One-pot green synthesis of pyrrole derivatives catalyzed by nano sulfated zirconia as a solid acid catalyst, Chin. J. Chem. 30 (2012) 372-376.[26] A. Teimouri, A. Najafi Chermahini, One-pot green synthesis of pyrrole derivatives catalyzed by nano sulfated zirconia as a solid acid catalyst, Chin. J. Chem. 30 (2012) 372-376.

    27. [27] M. Nikpassand, L. Zare, T. Shafaati, S. Shariati, Regioselective synthesis of fused azo-linked pyrazolo[4,3-e]pyridines using nano-Fe3O4, Chin. J. Chem. 30 (2012) 604-608.[27] M. Nikpassand, L. Zare, T. Shafaati, S. Shariati, Regioselective synthesis of fused azo-linked pyrazolo[4,3-e]pyridines using nano-Fe3O4, Chin. J. Chem. 30 (2012) 604-608.

    28. [28] J. Safaei-Ghomi, A. Ziarati, R. Teymuri, CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines, Bull. Korean Chem. Soc. 33 (2012) 2679-2682.[28] J. Safaei-Ghomi, A. Ziarati, R. Teymuri, CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines, Bull. Korean Chem. Soc. 33 (2012) 2679-2682.

    29. [29] H.J. Xu, Y.F. Liang, X.F. Zhou, Y.S. Feng, Efficient recyclable CuI-nanoparticlecatalyzed S-arylation of thiols with aryl halides on water under mild conditions, Org. Biomol. Chem. 10 (2012) 2562-2568.[29] H.J. Xu, Y.F. Liang, X.F. Zhou, Y.S. Feng, Efficient recyclable CuI-nanoparticlecatalyzed S-arylation of thiols with aryl halides on water under mild conditions, Org. Biomol. Chem. 10 (2012) 2562-2568.

    30. [30] J. Safaei-Ghomi, A. Ziarati, S. Zahedi, Ferric chloride supported on nano silica as a reusable heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under mild conditions, J. Chem. Sci. 124 (2012) 933-939.[30] J. Safaei-Ghomi, A. Ziarati, S. Zahedi, Ferric chloride supported on nano silica as a reusable heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under mild conditions, J. Chem. Sci. 124 (2012) 933-939.

    31. [31] J. Safaei-Ghomi, A. Ziarati, An efficient FeCl3/SiO2 NPs as a reusable heterogeneous catalyzed five-component reactions of tetrahydropyridines under mild conditions, J. Iran Chem. Soc. 10 (2013) 135-139.[31] J. Safaei-Ghomi, A. Ziarati, An efficient FeCl3/SiO2 NPs as a reusable heterogeneous catalyzed five-component reactions of tetrahydropyridines under mild conditions, J. Iran Chem. Soc. 10 (2013) 135-139.

    32. [32] J. Safaei-Ghomi, M.A. Ghasemzadeh, Zinc oxide nanoparticles: a highly efficient and readily recyclable catalyst for the synthesis of xanthenes, Chin. Chem. Lett. 23 (2012) 1225-1229.[32] J. Safaei-Ghomi, M.A. Ghasemzadeh, Zinc oxide nanoparticles: a highly efficient and readily recyclable catalyst for the synthesis of xanthenes, Chin. Chem. Lett. 23 (2012) 1225-1229.

    33. [33] V. Nair, R.S. Menon, A.U. Vinod, S.A. Viji, A facile three-component reaction involving [1+4] cycloaddition leading to furan annulated heterocycles, Tetrahedron Lett. 43 (2002) 2293-2295.[33] V. Nair, R.S. Menon, A.U. Vinod, S.A. Viji, A facile three-component reaction involving [1+4] cycloaddition leading to furan annulated heterocycles, Tetrahedron Lett. 43 (2002) 2293-2295.

    34. [34] A. Shaabani, S. Ajabi, F. Farrokhzad, H.R. Bijanzadeh, [1+4] Cycloaddition of isocyanides with 2-acetyl-1,4-benzoquinone; a conveient synthesis of isobenzofuran-4,7-quinones, J. Chem. Res. (1999) 582-583.[34] A. Shaabani, S. Ajabi, F. Farrokhzad, H.R. Bijanzadeh, [1+4] Cycloaddition of isocyanides with 2-acetyl-1,4-benzoquinone; a conveient synthesis of isobenzofuran-4,7-quinones, J. Chem. Res. (1999) 582-583.

    35. [35] B.C. Chen, Meldrum's acid in organic synthesis, Heterocycles 32 (1991) 529-597.[35] B.C. Chen, Meldrum's acid in organic synthesis, Heterocycles 32 (1991) 529-597.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2013-03-07
  • 收稿日期:  2012-11-12
  • 网络出版日期:  2013-01-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章